Esta es un versión antigua publicada el 2022-07-07. Consulte la versión más reciente.

¿Cómo afecta el ganado doméstico a la biomasa y la fecundidad de distintos tipos sucesionales de especies en el Monte Patagónico?

Autores/as

  • Y. Ivón Pelliza Laboratorio ECOTONO, INIBIOMA-CONICET. Bariloche, Río Negro, Argentina
  • Cintia P. Souto Laboratorio ECOTONO, INIBIOMA-CONICET. Bariloche, Río Negro, Argentina
  • Mariana Tadey Laboratorio ECOTONO, INIBIOMA-CONICET. Bariloche, Río Negro, Argentina

DOI:

https://doi.org/10.25260/EA.22.32.2.0.1825

Palabras clave:

especies intermedias, especies tardías, especies tempranas, ganado exótico, herbívoros, Monte Austral, plantas nativas

Resumen

La respuesta de las plantas a los disturbios se relaciona con sus características fisiológicas, sus formas de vida y su función dentro de la comunidad. Evaluamos la respuesta, en términos de biomasa y fecundidad, de los distintos tipos sucesionales de especies (colonizadoras, intermedias y tardías) del Monte Patagónico a un gradiente de carga ganadera (unidades ganaderas.año.ha-1). La biomasa la estimamos mediante el tamaño de las plantas consumidas (diámetro x altura) y la fecundidad a través del esfuerzo reproductivo (% de ramas reproductivas) y del porcentaje de semillas viables producido. Observamos que el ramoneo disminuyó la biomasa y la fecundidad de las plantas, tanto ramas reproductivas como semillas viables. Sin embargo, los tipos sucesionales de especies mostraron diferente producción de semillas viables en respuesta a la intensidad de pastoreo. Con el aumento del ganado se redujo el tamaño de especies colonizadoras, aumentó el de las intermedias, y el tamaño de las tardías no cambió significativamente. En general, el aumento del ramoneo afectó negativamente el esfuerzo reproductivo de todas las especies. A pesar de ello, las colonizadoras e intermedias aumentaron la producción de semillas viables, mientras que las tardías la disminuyeron. Estos resultados sugieren que las especies tardías son las más afectadas por el ganado en términos de fecundidad, lo que podría reducir su reclutamiento. El aumento de su biomasa con la carga ganadera en especies intermedias sugiere una respuesta compensatoria que podría otorgarles una ventaja a corto plazo. La pérdida de tejido que sufren las plantas por consumo del ganado impacta en la cantidad de semillas, pero, además, podría tener consecuencias en la tasa y el momento de germinación de la progenie. Los resultados ayudan a comprender la dinámica de las comunidades frente a los disturbios, y aportan información útil para elaborar estrategias de manejo y restauración de ecosistemas áridos.

Citas

Agrawal, A. A. 2001. Transgenerational consequences of plant responses to herbivory: An adaptive maternal effect? American Naturalist 157:555-569. https://doi.org/10.1086/319932.

Aguiar, M. R., and O. E. Sala. 1999. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology and Evolution 14:273-277. https://doi.org/10.1016/S0169-5347(99)01612-2.

Andersen, G. L., and K. Krzywinski. 2007. Mortality, recruitment and change of desert tree populations in a hyper-arid environment. PLoS ONE 2:1-10. https://doi.org/10.1371/journal.pone.0000208.

Angeloni, F., N. J. Ouborg, and R. Leimu. 2011. Meta-analysis on the association of population size and life history with inbreeding depression in plants. Biological Conservation 144:35-43. https://doi.org/10.1016/j.biocon.2010.08.016.

Armbruster, W. S. 1997. Exaptations link evolution of plant-herbivore and plant-pollinator interactions: a phylogenetic inquiry. Ecology 78:1661-1672. https://doi.org/10.1890/0012-9658(1997)078[1661:ELEOPH]2.0.CO;2.

Bagchi, S., and M. E. Ritchie. 2010. Herbivore effects on above- and belowground plant production and soil nitrogen availability in the Trans-Himalayan shrub-steppes. Oecologia 164:1075-1082. https://doi.org/10.1007/s00442-010-1690-5.

Bates, D., M. Mächler, B. M. Bolker, and S. C. Walker. 2014. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1):1-48. https://doi.org/10.18637/jss.v067.i01.

Bates, D., M. Maechler, B. Bolker, S. Walker, R. H. Christensen Bojesen, H. Singmann, B. Dai, F. Scheipl, and G. Grothendieck. 2019. Package “lme4”. R Project for Statistical Computing. URL: cran.r-project.org/web/packages/lme4/lme4.pdf.

Bazzaz, F. A. 1979. The physiological ecology of plant succession. Annual Review of Ecology and Systematics 10:351-371.

Beider, A., N. Ciano, and R. Zerrizuela. 2013. Revegetación artificial de taludes de locaciones en corte en la cuenca del Golfo San Jorge. Pp. 213-224 en D. R. Pérez, A. E. Rovere and M. E. Rodríguez Araujo (eds.). Restauración Ecológica en la Diagonal Árida de la Argentina. 1a edición. Vázquez Mazzini Editores. Buenos Aires, Argentina.

Berdugo, M., S. Soliveres, S. Kéfi, and F. T. Maestre. 2019. The interplay between facilitation and habitat type drives spatial vegetation patterns in global drylands. Ecography 42:755-767. https://doi.org/10.1111/ecog.03795.

Bisigato, A. J., and M. B. Bertiller. 2004. Seedling recruitment of perennial grasses in degraded areas of the Patagonian Monte. Journal Of Range Management 57:191-196. https://doi.org/10.2111/1551-5028(2004)057[0191:SROPGI]2.0.CO;2.

Bonser, S. P., and L. W. Aarssen. 1996. Meristem allocation: A new classification theory for adaptive strategies in herbaceous plants. Oikos 77:347. https://doi.org/10.2307/3546076.

Bonser, S. P., and L. W. Aarssen. 2001. Allometry and plasticity of meristem allocation throughout development in Arabidopsis thaliana. Journal of Ecology 89:72-79. https://doi.org/10.1046/j.1365-2745.2001.00516.x.

Bonser, S. P., and L. W. Aarssen. 2009. Interpreting reproductive allometry: Individual strategies of allocation explain size-dependent reproduction in plant populations. Perspectives in Plant Ecology, Evolution and Systematics 11:31-40. https://doi.org/10.1016/j.ppees.2008.10.003.

Boyer, J. S. 1988. Cell enlargement and growth-induced water potentials. Physiologia Plantarum 73:311-316. https://doi.org/10.1111/j.1399-3054.1988.tb00603.x.

Butler, J. L., and D. D. Briske. 1988. Population structure and tiller demography of the Bunchgrass Schizachyrium scoparium in response to herbivory. Wiley 51:306-312. https://doi.org/10.2307/3565311.

Cabrera, A. L. 1966. Esquema fitogeográfico de la República Argentina. Botanica 3:87-168.

Castilla, A. R., P. J. Garrote, M. Żywiec, G. Calvo, A. Suárez, E. Miguel, D. José, F. X. Picó, and J. M. Fedriani. 2019. Genetic rescue by distant trees mitigates qualitative pollen limitation imposed by fine‐scale spatial genetic structure. Molecular Ecology 28:4363-4374. https://doi.org/10.1111/mec.15233.

Castro, M. L., G. A. Zuleta, A. A. Pérez, M. E. Ciancio, P. Tchilinguirian, and C. A. Escartín. 2013. Rehabilitación de estepas arbustivas en locaciones petroleras del Monte Austral. Evaluación de la técnica de escarificado i: vegetación. Pp. 225- 245 en D. R. Pérez, A. E. Rovere and M. E. R. Araujo (eds.). Restauracion Ecológica en la Diagonal Árida de la Argentina. Buenos Aires: Vazquez Mazzini, Buenos Aires, Argentina.

Charlesworth, D., and B. Charlesworth. 1987. Inbreeding depression and its evolutionary consequences. Annual review of ecology and systematics 18:237-268. https://doi.org/10.1146/annurev.es.18.110187.001321.

Chen, J., T. Dong, B. Duan, H. Korpelainen, Ü. Niinemets, and C. Li. 2015. Sexual competition and N supply interactively affect the dimorphism and competiveness of opposite sexes in Populus cathayana. Plant, Cell and Environment 38:1285-1298. https://doi.org/10.1111/pce.12477.

Clements, F. E. 1916. Plant succession: an analysis of the development of vegetation. 242nd edition. Carnegie Institution of Washington. https://doi.org/10.5962/bhl.title.56234.

Clements, F. E. 1928. Plant succession and indicators. H. W. Wilson Company, New.

Connell, J. H., and R. O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist 111:1119-1144. https://doi.org/10.1086/283241.

Dalmasso, A. D. 2010. Revegetación de áreas degradadas con especies nativas. Boletín Sociedad Argentina de Botánica 45:149-171.

Edwards, G. R., M. J. M. Hay, and J. L. Brock. 2005. Seedling recruitment dynamics of forage and weed species under continuous and rotational sheep grazing in a temperate New Zealand pasture. Grass and Forage Science 60:186-199. https://doi.org/10.1111/j.1365-2494.2005.00467.x.

Ferrari, S., F. Cribari-Neto, S. L. P. Ferrari, and F. Cribari-neto. 2010. Beta regression for modelling rates and proportions beta regression for modelling rates and proportions. Journal of Applied Statistics 31:18. https://doi.org/10.1080/0266476042000214501.

Ferraro, D. O., and M. Oesterheld. 2002. Effect of defoliation on grass growth. A quantitative review. Oikos 98:125-133. https://doi.org/10.1034/j.1600-0706.2002.980113.x.

Fox, G. A. 2003. Assortative mating and plant phenology: evolutionary and practical consequences. Evolutionary Ecology Research 5:1-18.

Gandullo, R., J. Gastiazoro, and A. Bünzli. 1998. Dinamismo de la vegetación psamófila de Senillosa y Plottier provincia de Neuquén (Argentina). Multequina 7:11-20.

Gandullo, R., G. Siffredi, and V. Velasco. 2016. Guía para el reconocimiento de especies del norte neuquino. (INTA, Ed.). 1a ed. San Carlos de Bariloche, Río Negro.

Geber, M. A. 1990. The cost of meristem limitation in Polygonum arenastrum: Negative genetic correlations between fecundity and growth. Evolution 44:799. https://doi.org/10.1111/j.1558-5646.1990.tb03806.x.

Giantomasi, M. A., F. A. Roig Juñent, P. E. Villagra, and A. M. Srur. 2013. Morphometric characteristics, viability and germination of mesquite and sweet acacia seeds in northeastern Mexico. Journal of Arid Environments 35:169-174.

Gleason, H. A. 1939. The individualistic concept of the plant association. American Midland Naturalist 21:92-110. https://doi.org/10.2307/2420377.

González, M. F. 2010. Reintroducción de especies nativas de dos grupos funcionales en sitios con degradación severa en La Payunia de Neuquén, Argentina. Universidad Nacional del Comahue.

Grime, J. P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111:1169-1194. https://doi.org/10.1086/283244.

Hao, Y., and Z. He. 2019. Effects of grazing patterns on grassland biomass and soil environments in China: A meta-analysis. PLoS ONE 14:1-15. https://doi.org/10.1371/journal.pone.0215223.

Hereford, J., and K. S. Moriuchi. 2005. Variation among populations of Diodia teres (Rubiaceae) in environmental maternal effects. Journal of Evolutionary Biology 18:124-131. https://doi.org/10.1111/j.1420-9101.2004.00797.x.

Herman, J. J., and S. E. Sultan. 2011. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations. Frontiers in Plant Science 2:1-10. https://doi.org/10.3389/fpls.2011.00102.

Hothorn, T., F. Bretz, P. Westfall, and R. Heiberger. 2007. The multcomp Package.

Hothorn, T., F. Bretz, P. Westfall, R. M. Heiberger, A. Schuetzenmeister, and S. Scheibe. 2020. Package “multcomp”.

Le Houérou, H. N. 1996. Climate change, drought and desertification. Journal of arid Environments 34(2):133-185. https://doi.org/10.1006/jare.1996.0099.

Hoyle, G. L., K. J. Steadman, R. B. Good, E. J. McIntosh, L. M. E. Galea, and A. B. Nicotra. 2015. Seed germination strategies: An evolutionary trajectory independent of vegetative functional traits. Frontiers in Plant Science 6:1-13. https://doi.org/10.3389/fpls.2015.00731.

Huston, M. A., and D. DeAngelis. 1994. Competition and Coexistence: the effects of resource transport and supply rates. The American Naturalist 144:954-977. https://doi.org/10.1086/285720.

John, A., S. Weisberg, B. Price, D. Adler, D. Bates, G. Baud-Bovy, B. Bolker, S. Ellison, S. Graves, R. Heiberger, P. Krivitsky, R. Laboissiere, M. Maechler, G. Monette, D. Murdoch, D. Ogle, B. Ripley, W. Venables, S. Walker, D. Winsemius, and A. Zeileis. 2021. Package “car”.

Kazakou, E., D. Vile, B. Shipley, C. Gallet, and E. Garnier. 2006. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology 20:21-30. https://doi.org/10.1111/j.1365-2435.2006.01080.x.

Kerley, G. I. H., F. Tiver, and W. G. Whitford. 1993. Herbivory of clonal populations: cattle browsing affects reproduction and population structure of Yucca elata. Oecologia 93:12-17. https://doi.org/10.1007/BF00321184.

Lázaro, A., T. Tscheulin, J. Devalez, G. Nakas, and T. Petanidou. 2016. Effects of grazing intensity on pollinator abundance and diversity, and on pollination services. Ecological Entomology 41:400-412. https://doi.org/10.1111/een.12310.

Lehtilä, K., and S. Y. Strauss. 1997. Leaf damage by herbivores affects attractiveness to pollinators in wild radish, Raphanus raphanistrum. Oecologia 111:396-403. https://doi.org/10.1007/s004420050251.

Liu, H., D. Zhang, X. Yang, Z. Huang, S. Duan, and X. Wang. 2014. Seed dispersal and germination traits of 70 plant species inhabiting the Gurbantunggut Desert in northwest China. Scientific World Journal 1:13. https://doi.org/10.1155/2014/346405.

Masini, A. C. A. 2011. Germinación de especies nativas del norte neuquino: Provincias fitogeográficas del Monte y Patagónica (Distrito de la Payunia), e implicancias para la rehabilitación de zonas áridas degradadas. Tesis doctoral. Universidad Nacional del Sur.

Mazzoni, E., and M. Vázquez. 2010. Desertificación en la Patagonia. Pp. 1-24 en E. M. Latrubesse (ed.). Natural Hazards and Human-Exacerbated Disasters in Latin America. Chapter 17. Developments in Earth Surface Processes (Book Series). Elsevier B. V. Volume 13. http://doi.org/10.1016/S0928-2025(08)10017-7.

McNaughton, S. J. 1983. Compensatory plant growth as a response to herbivory. Oikos 40:329-336. https://doi.org/10.2307/3544305.

Mothershead, K., and R. J. Marquis. 2000. Fitness impact of herbivory through indirect effects on plant-pollinator interactions in Oenothera macrocarpa. Ecology 81:30-40. https://doi.org/10.1890/0012-9658(2000)081[0030:FIOHTI]2.0.CO;2.

Noy-Meir, I. 1973. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics 4(1):25-51. https://doi.org/10.1146/annurev.es.04.110173.000325.

Noy-Meir, I., and D. D. Briske. 1996. Fitness components of grazing-induced population reduction in a dominant annual, Triticum dioccoides (wild wheat). Journal of Ecology 84:439-448. https://doi.org/10.2307/2261205.

Oñatibia, G. R., M. R. Aguiar, P. A. Cipriotti, and F. Troiano. 2010. Individual plant and population biomass of dominant shrubs in Patagonian grazed fields. Ecología Austral 20(3):269-279.

Paruelo, J. M., A. Beltran, E. Jobbágy, O. E. Sala, and R. A. Golluscio. 1998. The climate of Patagonia: General patterns and controls on biotic processes. Ecología Austral 8(2):85-101.

Passera, C., B. Cavagnaro, and C. Sartor. 2010. Plantas C4, C4 y CAM nativas del monte árido argentino. Adaptaciones y potencial biológico. Pp. 165-176 en J. L. G. Rebollar and A. C. Sancho (eds.). C4 y CAM. Características generales y uso en programas de desarrollo de tierras áridas y semiáridas.

Pelliza, Y. I., A. Fernández, H. Saiz, and M. Tadey. 2021. Together we stand, divided we fall: effects of livestock grazing on vegetation patches in a desert community. Journal of Vegetation Science 32:e13015. https://doi.org/10.1111/jvs.13015.

Pelliza, Y. I., C. P. Souto, and M. Tadey. 2020. Unravelling effects of grazing intensity on genetic diversity and fitness of desert vegetation. Perspectives in Ecology and Conservation 18:178-189. https://doi.org/10.1016/j.pecon.2020.06.005.

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, EISPACK authors, S. Heisterkamp, B. VanWilligen, and J. Ranke. 2021. Package “nlme”.

Pol, R. G., M. C. Sagario, and L. Marone. 2014. Grazing impact on desert plants and soil seed banks: Implications for seed-eating animals. Acta Oecologica 55:58-65. https://doi.org/10.1016/j.actao.2013.11.009.

Poonam, S. Ahmad, N. Kumar, P. Chakraborty, and R. Kothari. 2017. Plant growth under stress conditions: Boon or bane. Pp. 291-313 en V. Shukla, S. Kumar and N. Kumar (eds.). Plant Adaptation Strategies in Changing Environment. Springer, Singapore. https://doi.org/10.1007/978-981-10-6744-0_12.

Pueyo, Y., D. Moret-Fernández, H. Saiz, C. G. Bueno, and C. L. Alados. 2013. Relationships between plant spatial patterns, water infiltration capacity, and plant community composition in semi-arid Mediterranean ecosystems along stress gradients. Ecosystems 16:452-466. https://doi.org/10.1007/s10021-012-9620-5.

R Development Core Team. 2017. R: A Language and environment for statistical computing. R Foundation for Statistical Computing. Viena, Austria.

R Team Core. 2016. Package “stats.” R Foundation for statistical computing, Vienna, Austria.

Rees, M., R. Condit, M. Crawley, S. Pacala, and D. Tilman. 2001. Long-Term Studies of Vegetation Dynamics. Science 293:650-655. https://doi.org/10.1126/science.1062586.

Roig-Juñent, S., G. Flores, S. Claver, G. Debandi, and A. Marvaldi. 2001. Monte Desert (Argentina): insect biodiversity and natural areas. Journal of Arid Environments 47:77-94. https://doi.org/10.1006/jare.2000.0688.

Rusterholz, H. P., M. Kissling, and B. Baur. 2009. Disturbances by human trampling alter the performance, sexual reproduction and genetic diversity in a clonal woodland herb. Perspectives in Plant Ecology, Evolution and Systematics 11:17-29. https://doi.org/10.1016/j.ppees.2008.09.002.

Saiz, H., and C. L. Alados. 2012. Changes in semi-arid plant species associations along a livestock grazing gradient. PLoS ONE 7:1-9. https://doi.org/10.1371/journal.pone.0040551.

Skaug, A. H., D. Fournier, A. Nielsen, A. Magnusson, and B. Bolker. 2018. glmmADMB: Generalized Linear Mixed Models using “AD Model Builder”.

Soliveres, S., C. Smit, and F. T. Maestre. 2015. Moving forward on facilitation research: response to changing environments and effects on the diversity, functioning and evolution of plant communities. Biological reviews of the Cambridge Philosophical Society 90:297-313. https://doi.org/10.1111/brv.12110.

Souto, C. P., and M. Tadey. 2018. Livestock effects on genetic variation of creosote bushes in Patagonian rangelands. Environmental Conservation 46:59-66. https://doi.org/10.1017/S0376892918000280.

Sternberg, M., M. Gutman, A. Perevolotsky, and J. Kigel. 2003. Effects of grazing on soil seed bank dynamics : An approach with functional groups. Journal of Vegetation Science 14:375-386. https://doi.org/10.1111/j.1654-1103.2003.tb02163.x.

Tadey, M. 2006. Grazing without grasses: Effects of introduced livestock on plant community composition in an arid environment in northern Patagonia. Applied Vegetation Science 9:109-116. https://doi.org/10.1111/j.1654-109X.2006.tb00660.x.

Tadey, M. 2007. Efectos del pastoreo sobre la polinización y reproducción de plantas del Monte Patagónico. Universidad Nacional del Comahue- Centro Regional Universitario Bariloche.

Tadey, M. 2008. Efecto del ganado sobre los niveles de polinización en especies vegetales del monte patagónico. Ecología Austral 18:89-100.

Tadey, M. 2015. Indirect effects of grazing intensity on pollinators and floral visitation. Ecological Entomology 40:451-460. https://doi.org/10.1111/een.12209.

Tadey, M. 2020. Reshaping phenology: Grazing has stronger effects than climate on flowering and fruiting phenology in desert plants. Perspectives in Plant Ecology, Evolution and Systematics 42:125501. https://doi.org/10.1016/j.ppees.2019.125501.

Tadey, M., and A. G. Farji-Brener. 2007. Discriminating direct and indirect effects of exotic grazers on native plant cover in the Monte desert of Argentina. Journal of Arid Environments 69:526-536. https://doi.org/10.1016/j.jaridenv.2006.10.016.

Tadey, M., and C. P. Souto. 2016. Unexpectedly, intense livestock grazing in arid rangelands strengthens the seedling vigor of consumed plants. Agronomy for Sustainable Development 36:63. https://doi.org/10.1007/s13593-016-0400-z.

Taylor, D. R., L. W. Aarssen, and C. Loehle. 1990. On the relationship between r/K selection and environmental carrying capacity: a new habitat templet for plant life history strategies. Oikos 58:239. https://doi.org/10.2307/3545432.

Trlica, M. J., and L. R. Rittenhouse. 1993. Grazing and plant performance. Ecological Applications 3:21-23. https://doi.org/10.2307/1941783.

Vallentine, J. F. 2001. Grazing Management. Second. Academic Press, San Diego, CA, US.

Villagra, P. E., and F. A. Roig. 2002. Distribución geográfica y fitosociología de Prosopis argentina y P. alpataco (Fabaceae, Mimosoidea). Boletín de la Sociedad Argentina de Botánica 37:99-106.

Villagra, P. E., C. Giordano, J. A. Alvarez, J. B. Cavagnaro, A. Guevara, C. Sartor, C. B. Passera, and S. Greco. 2011. Ser planta en el desierto: estrategias de uso de agua y resistencia al estrés hídrico en el Monte Central de Argentina. Ecología Austral 21:29-42.

Wilson, C. H., M. S. Strickland, J. A. Hutchings, T. S. Bianchi, and S. L. Flory. 2018. Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland. Global Change Biology 24:2997-3009. https://doi.org/10.1111/gcb.14070.

Yoshihara, Y., B. Chimeddorj, B. Buuveibaatar, B. Lhagvasuren, and S. Takatsuki. 2008. Effects of livestock grazing on pollination on a steppe in eastern Mongolia. Biological Conservation 141:2376-2386. https://doi.org/10.1016/j.biocon.2008.07.004.

Zamora, R., P. Garcá-Fayos, and L. Gómez-Aparicio. 2004. Las interacciones planta-planta y planta animal en el contexto de la sucesión ecológica. Pp. 371-394 en F. Valladares (ed.). Ecología del bosque mediterráneo en un mundo cambiante. 2da edición. Ministerio de Medio Ambiente y Medio Rural y Marino Organismo Autónomo Parques Nacionales, Madrid, España.

Zobel, M. 1989. Secondary forest succession in Järvselja, southeastern Estonia: Changes in field layer vegetation. Annales Botanici Fennici 26:171-182.

Zuleta, G., and C. Escartín. 2014. Regeneración post-disturbio en ambientes degradados por la actividad petrolera en Nor-Patagonia. Pp. 105-112 en A. S. Álvarez and D. R. Pérez (eds.). Aspectos ecológicos, microbioológicos y fisiológicos de la restauración de ambientes degradados de zonas áridas. Aportes de investigaciones de Argentina, Chile, Venezuela y México. Ministerio de Educación de la Nación y Conicet, Mendoza, Argentina.

¿Cómo afecta el ganado doméstico a la biomasa y la fecundidad de distintos tipos sucesionales de especies en el Monte Patagónico?

Descargas

Archivos adicionales

Publicado

2022-07-07

Versiones

Cómo citar

Pelliza, Y. I., Souto, C. P., & Tadey, M. (2022). ¿Cómo afecta el ganado doméstico a la biomasa y la fecundidad de distintos tipos sucesionales de especies en el Monte Patagónico?. Ecología Austral, 32(2), 453–468. https://doi.org/10.25260/EA.22.32.2.0.1825