Distribución potencial de la especie Puya raimondii e importancia de las áreas naturales protegidas frente al cambio climático

Autores/as

  • Wilfredo Huaman-Arqque Facultad de Ciencias, Universidad Nacional de San Antonio Abad del Cusco. Cusco, Perú
  • P. Joser Atauchi Museo de Historia Natural de Cusco (MHNC), Universidad Nacional de San Antonio Abad del Cusco. Cusco, Perú. Instituto para la Conservación de Especies Amenazadas de Perú. Cusco, Perú
  • Joaquín Clavijo-Manuttupa Facultad de Ciencias, Universidad Nacional de San Antonio Abad del Cusco. Cusco, Perú. Instituto para la Conservación de Especies Amenazadas de Perú. Cusco, Perú
  • Gina V. Amampa-Mena Facultad de Ciencias, Universidad Nacional de San Antonio Abad del Cusco. Cusco, Perú
  • Yulisa S. Soto-Quispe Facultad de Ciencias, Universidad Nacional de San Antonio Abad del Cusco. Cusco, Perú. Instituto para la Conservación de Especies Amenazadas de Perú. Cusco, Perú

DOI:

https://doi.org/10.25260/EA.22.32.3.0.1943

Palabras clave:

nicho ecológico, distribución de especies, especies de alta montaña, áreas protegidas, conservación

Resumen

La Reina de los Andes (Puya raimondii) es una especie vegetal categorizada como ‘en peligro’ debido a la fragmentación y la perdida de hábitat, y a la disminución de sus poblaciones a través de su área de distribución. Usamos modelamiento de nicho ecológico en el contexto de varios escenarios de cambio climático para estimar la distribución potencial de la especie para el presente y para los años 2050 y 2070. Analizamos el efecto de perdida de hábitat y la importancia de las áreas naturales protegidas a través de su rango de extensión. Los modelos de nicho ecológico predijeron una distribución de 137522 km2 y un remanente de hábitat de 69356 km2 entre Perú y Bolivia, reducido en un 54.4% por las actividades humanas. En promedio, el cambio climático reducirá el área de distribución potencial un 41.3% en el 2050 y un 51.1% en el 2070. Las áreas naturales protegidas actuales no son significativas para la conservación de esta especie; cubren sólo un 7.5% de su distribución, pero observamos una reducción de 41.7-47.5% de hábitat de la especie dentro de esas áreas a causa del cambio climático. Estos resultados ofrecen una perspectiva de estudios de cambio climático para definir unidades de conservación y estrategias de adaptación al cambio climático.

Citas

Anderson, E. P., J. Marengo, R. Villalba, S. Halloy, B. Young, D. Cordero, F. Gast, E. Jaimes, and D. Ruiz. 2011. Consequences of climate change for ecosystems and ecosystem services in the tropical Andes. Climate Change and Biodiversity in the Tropical Andes 1:1-18.

Anderson, R. P., D. Lew, and A. T. Peterson. 2003. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling 162:211-232. https://doi.org/10.1016/S0304-3800(02)00349-6.

Apolinario, J., and K. S. Cárdenas. 2015. Capacidad de almacenamiento de carbono en un bosque joven y maduro de Puya raimondii Harms, Vilcashuaman–Ayacucho. Universidad Nacional del Centro del Peru, Huancayo, Perú.

Aquino, W., F. Condo, J. Romero, and R. Yllaconz. 2018. Distribución geográfica y poblacional de Puya raimondii Harms en el distrito de Huarochirí, provincia de Huarochirí, Lima, Perú. The Biologist (Lima) 16. https://doi.org/10.24039/rtb2018161219.

Atauchi, P. J. 2018. sdStaf: Species distribution and stability future models. R package version 1.0.2 URL: CRAN.R-project.org/package=sdStaf.

Atauchi, P. J., C. Aucca-Chutas, G. Ferro, and D. A. Prieto-Torres. 2020. Present and future potential distribution of the endangered Anairetes alpinus (Passeriformes: Tyrannidae) under global climate change scenarios. Journal of Ornithology 161:723-738. https://doi.org/10.1007/s10336-020-01762-z.

Ayasta, J. E., A. M. Juárez, and J. Escurra. 2021. Nuevos registros de Puya (Bromeliaceae) en el departamento de Lambayeque, Perú. Revista Peruana de Biología 28:e18115. https://doi.org/10.15381/rpb.v28i2.18115.

Barve, N., V. Barve, A. Jiménez-Valverde, A. Lira-Noriega, S. P. Maher, A. T. Peterson, J. Soberón, and F. Villalobos. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222:1810-1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011.

Bivand, R., T. Keitt, B. Rowlingson, E. Pebesma, M. Sumner, R. Hijmans, E. Rouault, and M. R. Bivand. 2015. rgdal: Bindings for the 'Geospatial' Data Abstraction Library. R package version 1.5-23. URL: CRAN.R-project.org/package=rgdal.

Bivand, R., C. Rundel, E. Pebesma, R. Stuetz, K. O. Hufthammer, and M. R. Bivand. 2017. rgeos: Interface to Geometry Engine - Open Source ('GEOS'). R package version 0.5-5. URL: CRAN.R-project.org/package=rgeos.

Bonino, M. F., D. L. M. Azócar, J. A. Schulte, and F. B. Cruz. 2015. Climate change and lizards: changing species' geographic ranges in Patagonia. Regional Environmental Change 15:1121-1132. https://doi.org/10.1007/s10113-014-0693-x.

Boria, R. A., L. E. Olson, S. M. Goodman, and R. P. Anderson. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275:73-77. https://doi.org/10.1016/j.ecolmodel.2013.12.012.

Brack Egg, A., and C. M. V. Mendiola V. 2000. Ecología del Perú. Bruño, Lima, Perú.

Cobos, M. E., and R. A. Bosch. 2018. Recent and future threats to the Endangered Cuban toad Peltophryne longinasus: potential additive impacts of climate change and habitat loss. Oryx 52:116-125. https://doi.org/10.1017/S0030605316000612.

Cobos, M. E., A. T. Peterson, N. Barve, and L. Osorio-Olvera. 2019. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7:e6281. https://doi.org/10.7717/peerj.6281.

Costa, G. C., C. Nogueira, R. B. Machado, and G. R. Colli. 2010. Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodiversity and Conservation 19:883-899. https://doi.org/10.1007/s10531-009-9746-8.

Da Conceição, H. R., J. Börner, and S. Wunder. 2015. Why were upscaled incentive programs for forest conservation adopted? Comparing policy choices in Brazil, Ecuador, and Peru. Ecosystem Services 16:243-252. https://doi.org/10.1016/j.ecoser.2015.10.004.

de Pous, P., A. Montori, F. Amat, and D. Sanuy. 2016. Range contraction and loss of genetic variation of the Pyrenean endemic newt Calotriton asper due to climate change. Regional Environmental Change 16:995-1009. https://doi.org/10.1007/s10113-015-0804-3.

Di Marco, M., O. Venter, H. P. Possingham, and J. E. Watson. 2018. Changes in human footprint drive changes in species extinction risk. Nature Communications 9:1-9. https://doi.org/10.1038/s41467-018-07049-5.

Elith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee, and C. J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17:43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x.

Escobar, L. E., A. Lira-Noriega, G. Medina-Vogel, and A. T. Peterson. 2014. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospatial Health 9:221-229. https://doi.org/10.4081/gh.2014.19.

Feeley, K. J., and M. R. Silman. 2010. Land‐use and climate change effects on population size and extinction risk of Andean plants. Global Change Biology 16:3215-3222. https://doi.org/10.1111/j.1365-2486.2010.02197.x.

Feld, C. K., P. Martins da Silva, J. Paulo Sousa, F. De Bello, R. Bugter, U. Grandin, D. Hering, S. Lavorel, O. Mountford, and I. Pardo. 2009. Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos 118:1862-1871. https://doi.org/10.1111/j.1365-2486.2010.02197.x.

Fordham, D. A., H. Resit Akçakaya, M. B. Araújo, J. Elith, D. A. Keith, R. Pearson, T. D. Auld, C. Mellin, J. W. Morgan, and T. J. Regan. 2012. Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming? Global Change Biology 18:1357-1371. https://doi.org/10.1111/j.1365-2486.2011.02614.x.

GBIF.org. 2021. GBIF occurrence download.

Givnish, T. J., K. C. Millam, T. M. Evans, J. C. Hall, J. Chris Pires, P. E. Berry, and K. J. Sytsma. 2004. Ancient vicariance or recent long-distance dispersal? inferences about phylogeny and South American–African disjunctions in Rapateaceae and Bromeliaceae based on ndh F sequence data. International Journal of Plant Sciences 165:S35-S54. https://doi.org/10.1086/421067.

Grau, A., E. Gómez-Romero, and E. Aráoz. 2010. Puyas andinas. Ciencia Hoy 20:8-15.

Guisan, A., and N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological modelling 135:147-186. https://doi.org/10.1016/S0304-3800(00)00354-9.

Gullison, R. E., and J. Hardner. 2018. Progress and challenges in consolidating the management of amazonian protected areas and indigenous territories. Conservation Biology 32:1020-1030. https://doi.org/10.1111/cobi.13122.

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. Pp. 1965-1978 en International Journal of Climatology. URL: CRAN.R-project.org/package=raster.

Hijmans, R. J., J. Van Etten, J. Cheng, M. Mattiuzzi, M. Sumner, J. A. Greenberg, O. P. Lamigueiro, A. Bevan, E. B. Racine, and A. Shortridge. 2015. raster: Geographic Data Analysis and Modeling. R package version 3.4-10. URL: CRAN.R-project.org/package=raster.

Horres, R., G. Zizka, G. Kahl, and K. Weising. 2000. Molecular phylogenetics of Bromeliaceae: evidence from trnL (UAA) intron sequences of the chloroplast genome. Plant Biology 2:306-315. https://doi.org/10.1055/s-2000-3700.

Jabaily, R. S., and K. J. Sytsma. 2013. Historical biogeography and life-history evolution of Andean Puya (Bromeliaceae). Botanical Journal of the Linnean Society 171:201-224. https://doi.org/10.1111/j.1095-8339.2012.01307.x.

Lambe, A. 2009. Puya raimondii. The IUCN Red List of Threatened Species 2009. IUCN, Gland, Switzerland.

Lande, R. 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. American Naturalist 142:911-927. https://doi.org/10.1111/j.1095-8339.2012.01307.x.

Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385-393. https://doi.org/10.1111/j.0906-7590.2005.03957.x.

Liu, C., M. White, and G. Newell. 2013. Selecting thresholds for the prediction of species occurrence with presence‐only data. Journal of Biogeography 40:778-789. https://doi.org/10.1111/jbi.12058.

Mandle, L., H. Tallis, L. Sotomayor, and A. L. Vogl. 2015. Who loses? Tracking ecosystem service redistribution from road development and mitigation in the Peruvian Amazon. Frontiers in Ecology and the Environment 13:309-315. https://doi.org/10.1890/140337.

Martínez-Meyer, E., A. T. Peterson, and W. W. Hargrove. 2004. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology and Biogeography 13:305-314. https://doi.org/10.1111/j.1466-822X.2004.00107.x.

McGowan, P. J. 2016. Mapping the terrestrial human footprint. Nature 537:172-173. https://doi.org/10.1038/537172a.

Merow, C., M. J. Smith, T. C. Edwards Jr, A. Guisan, S. M. McMahon, S. Normand, W. Thuiller, R. O. Wüest, N. E. Zimmermann, and J. Elith. 2014. What do we gain from simplicity versus complexity in species distribution models? Ecography 37:1267-1281. https://doi.org/10.1111/ecog.00845.

Meza, H. E. M. 2017. Conteo de individuos de Puya raimondii mediante técnicas geomáticas en territorio de la Comunidad Campesina Cajamarquillla, Ancash. Revista de Glaciares y Ecosistemas de Montaña 2:79-86. https://doi.org/10.36580/rgem.i2.79-86.

MINAGRI. 2014. Decreto Supremo que aprueba la actualización de la lista de clasificación y categorización de las especies amenazadas de fauna silvestre legalmente protegidas. Diario el Peruano 520:497-504.

Mitchell, B. A., S. Stolton, J. Bezaury-Creel, H. C. Bingham, T. L. Cumming, N. Dudley, J. A. Fitzsimons, D. Malleret-King, K. H. Redford, and P. Solano. 2018. Guidelines for privately protected areas. IUCN, Gland, Switzerland. https://doi.org/10.2305/IUCN.CH.2018.PAG.29.en.

Montesinos, D. 2014. Inventario y estado de conservación de Puya raimondii (Bromeliaceae) en el departamento de Moquegua, Peru. Chloris Chilensis: Revista Chilena de Flora y Vegetacion 17:1-9.

Montesinos-Tubée, D. B., A. M. Cleef, and K. V. Sýkora. 2015. The puna vegetation of Moquegua, south Peru: Chasmophytes, grasslands and Puya raimondii stands. Phytocoenologia 45:365-397. https://doi.org/10.1127/phyto/2015/0006.

Montgomery, R. A., P. B. Reich, and B. J. Palik. 2010. Untangling positive and negative biotic interactions: views from above and below ground in a forest ecosystem. Ecology 91:3641-3655. https://doi.org/10.1890/09-1663.1.

Morrone, J. J. 2014. Biogeographical regionalisation of the neotropical region. Zootaxa 3782:1-110. https://doi.org/10.11646/zootaxa.3782.1.1.

Olson, D. M., E. Dinerstein, E. D. Wikramanayake, N. D. Burgess, G. V. Powell, E. C. Underwood, J. A. D'amico, I. Itoua, H. E. Strand, and J. C. Morrison. 2001. Terrestrial ecoregions of the world: A new map of life on Earth. BioScience 51:933-938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.

Ortega-Andrade, H. M., D. A. Prieto-Torres, I. Gómez-Lora, and D. J. Lizcano. 2015. Ecological and geographical analysis of the distribution of the mountain tapir (Tapirus pinchaque) in Ecuador: importance of protected areas in future scenarios of global warming. PloS ONE 10:e0121137. https://doi.org/10.1371/journal.pone.0121137.

Peterson, A. T., M. Papeş, and J. Soberón. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling 213:63-72. https://doi.org/10.1016/j.ecolmodel.2007.11.008.

Peterson, A. T., J. Soberón, R. G. Pearson, R. P. Anderson, M. Nakamura, E. Martínez-Meyer, and M. B. Araújo. 2011. Ecological Niches and Geographic Distributions. Princeton University Press, Princeton. https://doi.org/10.23943/princeton/9780691136868.003.0003.

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.

Prieto‐Torres, D. A., A. G. Navarro‐Sigüenza, D. Santiago‐Alarcon, and O. R. Rojas‐Soto. 2016. Response of the endangered tropical dry forests to climate change and the role of Mexican Protected Areas for their conservation. Global Change Biology 22:364-379. https://doi.org/10.1111/gcb.13090.

Quispe-Rojas, W. R., and E. Elías-Núñez. 2020. Distribución potencial de Puya raimondii harms en futuros escenarios del cambio climático. Revista de Investigaciones Altoandinas 22:170-181. https://doi.org/10.18271/ria.2020.605.

R Core Team. 2003. R: a language and environment for statistical computing 1.8. 1. CRAN, Vienna, Austria.

Radosavljevic, A., and R. P. Anderson. 2014. Making better maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography 41:629-643. https://doi.org/10.1111/jbi.12227.

Reddy, S., and L. M. Dávalos. 2003. Geographical sampling bias and its implications for conservation priorities in Africa. Journal of Biogeography 30:1719-1727. https://doi.org/10.1111/jbi.12227.

Salazar-Castillo, J., F. Cáceres de Baldarrago, I. Poma, and F. Raimondo. 2010. Diagnostico del estado actual de consevación de Puya raimondii en Arequipa-Perú.

Salinas, L., C. Arana, and M. Suni. 2007. El néctar de especies de puya como recurso para picaflores altoandinos de Ancash, Perú. Revista Peruana de Biología 14:129-134. https://doi.org/10.15381/rpb.v14i1.2166.

Sgorbati, S., M. Labra, E. Grugni, G. Barcaccia, G. Galasso, U. Boni, M. Mucciarelli, S. Citterio, A. B. Iramátegui, and L. V. Gonzales. 2004. A survey of genetic diversity and reproductive biology of Puya raimondii (Bromeliaceae), the endangered queen of the Andes. Plant Biology 6:222-230. https://doi.org/10.1055/s-2004-817802.

Shcheglovitova, M., and R. P. Anderson. 2013. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecological Modelling 269:9-17. https://doi.org/10.1016/j.ecolmodel.2013.08.011.

Soberón, J., and A. T. Peterson. 2005. Interpretation of models of fundamental ecological niches and species' distributional areas. Biodiversity Informatics 2:1-10. https://doi.org/10.17161/bi.v2i0.4.

Song, X.-P., M. C. Hansen, S. V. Stehman, P. V. Potapov, A. Tyukavina, E. F. Vermote, and J. R. Townshend. 2018. Global land change from 1982 to 2016. Nature 560:639-643. https://doi.org/10.1038/s41586-018-0411-9.

Stein, A., K. Gerstner, and H. Kreft. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17:866-880. https://doi.org/10.1111/ele.12277.

Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. Erasmus, M. F. De Siqueira, A. Grainger, and L. Hannah. 2004. Extinction risk from climate change. Nature 427:145-148. https://doi.org/10.1038/nature02121.

UNEP-WCMC. 2021a. Protected Area Profile for Bolivia (Plurinational State of) from the World Database of Protected Areas. URL: protectedplanet.net.

UNEP-WCMC. 2021b. Protected Area Profile for Peru from the World Database of Protected Areas. URL: protectedplanet.net.

Vadillo, G., and M. Suni. 2006. Evaluación de sustratos para el establecimiento en laboratorio de plántulas de Puya raimondii Harms (Bromeliaceae). Revista Peruana de Biología 13:139-141. https://doi.org/10.15381/rpb.v13i1.1777.

Varadarajan, G. 1990. Patterns of geographic distribution and their implications on the phylogeny of Puya (Bromeliaceae). Journal of the Arnold Arboretum 71(4):527-552. https://doi.org/10.5962/p.184538.

Vargas, C., J. Montalbán, and A. A. León. 2019. Early warning tropical forest loss alerts in Peru using Landsat. Environmental Research Communications 1:121002. https://doi.org/10.1088/2515-7620/ab4ec3.

Veech, J. A., and T. O. Crist. 2007. Habitat and climate heterogeneity maintain beta‐diversity of birds among landscapes within ecoregions. Global Ecology and Biogeography 16:650-656. https://doi.org/10.1111/j.1466-8238.2007.00315.x.

Warren, D. L., and S. N. Seifert. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21:335-342. https://doi.org/10.1890/10-1171.1.

Warren, D. L., A. N. Wright, S. N. Seifert, and H. B. Shaffer. 2014. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diversity and Distributions 20:334-343. https://doi.org/10.1111/ddi.12160.

Weinzettel, J., D. Vačkář, and H. Medková. 2018. Human footprint in biodiversity hotspots. Frontiers in Ecology and the Environment 16:447-452. https://doi.org/10.1002/fee.1825.

Williams, B. A., O. Venter, J. R. Allan, S. C. Atkinson, J. A. Rehbein, M. Ward, M. Di Marco, H. S. Grantham, J. Ervin, and S. J. Goetz. 2020. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3:371-382. https://doi.org/10.1016/j.oneear.2020.08.009.

Wolff, E., N. Arnell, and P. Friedlingstein. 2017. Climate updates: progress since the fifth Assessment Report (AR5) of the IPCC. Report. The Royal Society.

Yañez-Arenas, C., A. Townsend Peterson, K. Rodríguez-Medina, and N. Barve. 2016. Mapping current and future potential snakebite risk in the new world. Climatic Change 134:697-711. https://doi.org/10.1007/s10584-015-1544-6.

Young, K. R. 2014. Ecología de los cambios de cobertura del paisaje de glaciares de montañas tropicales. Revista Peruana de Biología 21:259-270. https://doi.org/10.15381/rpb.v21i3.10900.

Zhang, Y., M. Loreau, N. He, J. Wang, Q. Pan, Y. Bai, and X. Han. 2018. Climate variability decreases species richness and community stability in a temperate grassland. Oecologia 188:183-192. https://doi.org/10.1007/s00442-018-4208-1.

Zhang, Y., M. Loreau, X. Lü, N. He, G. Zhang, and X. Han. 2016. Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Global Change Biology 22:1445-1455. https://doi.org/10.1111/gcb.13140.

Zorzal-Almeida, S., L. M. Bini, and D. C. Bicudo. 2017. Beta diversity of diatoms is driven by environmental heterogeneity, spatial extent and productivity. Hydrobiologia 800:7-16. https://doi.org/10.1007/s10750-017-3117-3.

Distribución potencial de la especie Puya raimondii e importancia de las áreas naturales protegidas frente al cambio climático

Descargas

Publicado

2022-10-27

Cómo citar

Huaman-Arqque, W., Atauchi, P. J., Clavijo-Manuttupa, J., Amampa-Mena, G. V., & Soto-Quispe, Y. S. (2022). Distribución potencial de la especie Puya raimondii e importancia de las áreas naturales protegidas frente al cambio climático. Ecología Austral, 1007–1018. https://doi.org/10.25260/EA.22.32.3.0.1943

Número

Sección

Artículos