Patrones de actividad y superposición temporal entre carnívoros nativos y exóticos en remanentes sureños de bosque seco tumbesino en Perú

Autores/as

DOI:

https://doi.org/10.25260/EA.23.33.2.0.1985

Palabras clave:

coexistencia, co-ocurrencia, mesocarnívoros, carnívoros domésticos

Resumen

El bosque seco tumbesino (BST) es un ecosistema amenazado ubicado en el noroeste de Perú. Los últimos remanentes al sur de su distribución se ubican en la región de La Libertad. Al igual que en otros ecosistemas, la presencia del perro y el gato doméstico pueden generar un impacto negativo en los carnívoros silvestres nativos. Sin embargo, esta problemática está muy poco estudiada en Perú. En el siguiente trabajo, mediante fototrampeo evaluamos los patrones de actividad y la superposición temporal entre carnívoros domésticos y silvestres dentro de un remanente de BST ubicado en San José - Pacasmayo (La Libertad). Durante el período agosto de 2020 - febrero de 2021 obtuvimos un total de 452 eventos independientes de carnívoros, con un esfuerzo de muestreo de 1380 trampas-noche. Nuestros resultados revelaron que el gato doméstico (Felis silvestris catus), el perro doméstico (Canis lupus familiaris) y el zorro de Sechura (Lycalopex sechurae) presentaron una actividad catameral, mientras que el gato de pajonal (Leopardus garleppi) y el añás (Conepatus semistriatus), una actividad mayormente nocturna. El gato de pajonal y el gato doméstico obtuvieron un índice de superposición alto; el zorro de Sechura y ambos carnívoros domésticos presentaron un índice de superposición moderado, y el añás y el gato doméstico obtuvieron un índice de superposición moderado; por su parte, el añás y el perro doméstico obtuvieron un índice de superposición bajo. Estos hallazgos sugieren que el gato de pajonal, el añás y el zorro de Sechura son susceptibles a interactuar con carnívoros domésticos.

Citas

Agostinelli, C., and Lund U. (2022). R package 'circular': Circular Statistics (version 0.4-95). URL: r-forge.r-project.org/projects/circular.

Beltrami, E., N. Gálvez, C. Osorio, M. J. Kelly, D. Morales-Moraga, and C. Bonacic. 2021. Ravines as conservation strongholds for small wildcats under pressure from free-ranging dogs and cats in Mediterranean landscapes of Chile. Studies on Neotropical Fauna and Environment 1-17. https://doi.org/10.1080/01650521.2021.1933691.

Bennett, K. F., B. S. Evans, J. A. Clark, and P. P. Marra. 2021. Domestic cat abundance and activity across a residential land use gradient. Frontiers in Ecology and Evolution 9:643845. https://doi.org/10.3389/fevo.2021.643845.

Bertrand, M. R., and M. L. Wilson. 1996. Microclimate-dependent survival of unfed adult Ixodes scapularis (Acari: Ixodidae) in nature: life cycle and study design implications. Journal of Medical Entomology 33(4):619-627. https://doi.org/10.1093/jmedent/33.4.619.

Carver, B. D., M. L. Kennedy, A. E. Houston, and S. B. Franklin. 2011. Assessment of temporal partitioning in foraging patterns of syntopic Virginia opossums and raccoons. Journal of Mammalogy 92(1):134-139. https://doi.org/10.1644/10-MAMM-A-066.1.

Carvalho, W. D., L. M. Rosalino, M. S. A. M. Godoy, M. F. Giorgete, C. H. Adania, and C. E. L. Esbérard. 2019. Temporal activity of rural free-ranging dogs: Implications for the predator and prey species in the Brazilian Atlantic Forest. NeoBiota 45:55-74. https://doi.org/10.3897/neobiota.45.30645.

Cavalcanti, G. N., and L. D. Alfaro-Alvarado. 2014. Home range and activity patterns of Conepatus semistriatus (Carnivora, Mephitidae) in Emas National Park , Brazil. https://doi.org/10.1163/15707563-00002436.

Chipana Auris, K. G. 2019. Ocurrencia estacional de un Cecidomyiidae en algarrobo (Prosopis pallida) HBK en Pacasmayo-Perú. Tesis pregrado: Lima-Perú.

Debata, S., and K. K. Swain. 2018. Estimating Mammalian Diversity and Relative Abundance Using Camera Traps in a Tropical Deciduous Forest of Kuldiha Wildlife Sanctuary, Eastern India. Mammal Study 43(1):1-9. https://doi.org/10.3106/ms2017-0078.

De Cassia Bianchi, R., N. Olifiers, L. L. Riski, J. A. Gouvea, C. S. Cesário, L. Fornitano, et al. 2020. Dog activity in protected areas: behavioral effects on mesocarnivores and the impacts of a top predator. European Journal of Wildlife Research 66(3). https://doi.org/10.1007/s10344-020-01376-z.

Doherty, T. S., C. R. Dickman, A. S. Glen, T. M. Newsome, D. G. Nimmo, E. G. Ritchie, A. T. Vanak, and A. J. Wirsing. 2017. The global impacts of domestic dogs on threatened vertebrates. Biological Conservation 210:56-59. https://doi.org/10.1016/j.biocon.2017.04.007.

Ferreira, J. P., I. Leitão, M. Santos-Reis, and E. Revilla. 2011. Human-related factors regulate the spatial ecology of domestic cats in sensitive areas for conservation. PLoS ONE 6(10):e25970. https://doi.org/10.1371/journal.pone.0025970.

Fremout, T., E. Thomas, H. Gaisberger, K. Van Meerbeek, J. Muenchow, S. Briers, C. E. Gutiérrez-Miranda, J. L. Marcelo-Peña, R. Kindt, R. Atkinson, O. Cabrera, C. I. Espinosa, Z. Aguirre-Mendoza, and B. Muys. 2020. Mapping tree species vulnerability to multiple threats as a guide to restoration and conservation of tropical dry forests. Global Change Biology 26(6):3552-3568. https://doi.org/10.1111/gcb.15028.

García-Olaechea, A., and C. M. Hurtado. 2020. Temporal overlap between two sympatric carnivores in northwestern Peru and southwestern Ecuador. Journal of Threatened Taxa 12(2):15244-15250. https://doi.org/10.11609/jott.5483.12.2.15244-15250.

Gerber, B. D., S. M. Karpanty, and J. Randrianantenaina. 2012 Activity patterns of carnivores in the rain forests of Madagascar: implications for species coexistence. J Mammal 93:667-676. https://doi.org/10.1644/11-MAMM-A-265.1.

Gómez, H., R. B. Wallace, G. Ayala, and R. Tejada. 2005. Dry season activity periods of some Amazonian mammals. Studies on Neotropical Fauna and Environment 40(2):91-95. https://doi.org/10.1080/01650520500129638.

Gordon, J. C., and E. J. Angrick. 1986. Canine parvovirus: environmental effects on infectivity. American Journal of Veterinary Research 47(7):1464-1467.

Griss, S., S. Riemer, C. Warembourg, F. M. Sousa, E. Wera, M. Berger-González, et al. 2021. If they could choose: How would dogs spend their days? Activity patterns in four populations of domestic dogs. Applied Animal Behaviour Science 243:105449. https://doi.org/10.1016/j.applanim.2021.105449.

Hernández, F. A., J. Manqui, C. Mejías, and G. Acosta-Jamett. 2021. Domestic Dogs and Wild Foxes Interactions in a Wildlife-Domestic Interface of North-Central Chile: Implications for Multi-Host Pathogen Transmission 8:1-13. https://doi.org/10.3389/fvets.2021.631788.

Horn, J. A., N. Mateus‐Pinilla, R. E. Warner, and E. J. Heske. 2011. Home range, habitat use, and activity patterns of free‐roaming domestic cats. The Journal of Wildlife Management 75(5):1177-1185. https://doi.org/10.1002/jwmg.145.

Janzen, D. H. 1988. Management of Habitat Fragments in a Tropical Dry Forest: Growth. Annals of the Missouri Botanical Garden 75(1):105. https://doi.org/10.2307/2399468.

Jenks, K. E., P. Chanteap, D. Kanda, C. Peter, P. Cutter, T. Redford et al. 2011. Using relative abundance indices from camera-trapping to test wildlife conservation hypotheses-an example from Khao Yai National Park, Thailand. Tropical Conservation Science 4(2):113-131. https://doi.org/10.1177/194008291100400203.

Lessa I, T. Corrêa Seabra Guimarães, H. de Godoy Bergallo, et al. 2016. Domestic dogs in protected areas: a threat to Brazilian mammals? Nat Conserv 14:46-56. https://doi.org/10.1016/j.ncon.2016.05.001.

Linares-Palomino, R. 2004. Los bosques tropicales estacionalmente secos: II. Fitogeografía y composición florística. Arnaldoa 11(1):103-138.

Linkie, M., and M. S. Ridout. 2011. Assessing tiger-prey interactions in Sumatran rainforests. Journal of Zoology 284(3):224-229. https://doi.org/10.1111/j.1469-7998.2011.00801.x.

López-Jara, M. J., I. Sacristán, A. A. Farías, F. Maron-Pérez, F. Acuna, E. Aguilar, S. García, P. Contreras, E. A. Silva-Rodríguez, and C. Napolitano. 2021. Free-roaming domestic cats near conservation areas in Chile: Spatial movements, human care and risks for wildlife. Perspectives in Ecology and Conservation 19(3):387-398. https://doi.org/10.1016/j.pecon.2021.02.001.

Mella-Méndez, I., R. Flores-Peredo, J. Pérez-Torres, S. Hernández-González, D. U. González-Uribe, and B. del Socorro Bolívar-Cimé. 2019. Activity patterns and temporal niche partitioning of dogs and medium-sized wild mammals in urban parks of Xalapa, Mexico. Urban Ecosystems 22(6):1061-1070. https://doi.org/10.1007/s11252-019-00878-2.

Meredith, M, and M. Ridout. 2014. The overlap package. URL: cran.cs.wwu.edu/web/packages/overlap/vignettes/overlap.pdf.

Monterroso, P., P. C. Alves, and P. Ferreras. 2014. Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: Implications for species coexistence. Behavioral Ecology and Sociobiology 68(9):1403-1417. https://doi.org/10.1007/s00265-014-1748-1.

Niedballa, J., R. Sollmann, A. Courtiol, and A. Wilting. 2016. camtrapR: an R package for efficient camera trap data management. Methods in Ecology and Evolution 7(12):1457-1462. https://doi.org/10.1111/2041-210X.12600.

Nouvellet, P., C. A. Donnelly, M. De Nardi, C. J. Rhodes, P. De Benedictis, C. Citterio, F. Obber, M. Lorenzetto, M. D. Pozza, S. Cauchemez, and G. Cattoli. 2013. Rabies and Canine Distemper Virus Epidemics in the Red Fox Population of Northern Italy (2006-2010). PLoS ONE 8(4). https://doi.org/10.1371/journal.pone.0061588.

Olson, D. M., and E. Dinerstein. 2002. The Global 200: Priority ecoregions for global conservation. Annals of the Missouri Botanical Garden 199-224. https://doi.org/10.2307/3298564.

Pereda-Sánchez, A., M. Quevedo-Urday, R. Perales, C. Calvo-Mac, D. Gamboa-Quispe, and P. M. Broncales. 2022. Reporte de caso: Hallazgos histopatológicos asociados a distemper canino en un zorro de Sechura (Lycalopex sechurae). Revista de Investigaciones Veterinarias del Perú 33(5):1-6. https://doi.org/10.15381/rivep.v35i5.22551.

Ridout, M. S., and L. Matthew. 2009. Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics 14:322-337. https://doi.org/10.1198/jabes.2009.08038.

Roelke-Parker, M. E., L. Munson, C. Packer, R. Kock, S. Cleaveland, M. Carpenter, S. J. O’Brien, A. Pospischil, R. Hofman-Lehmann, H. Lutz, G. L. M. Mwamengele, M. N. Mgasa, G. A. Machange, B. A. Summers, and M. J. G. Appel. 1996. A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature 379(6564):441-445. https://doi.org/10.1038/379441a0.

Rovero, F., and A. R. Marshall. 2009. Camera trapping photographic rate as an index of density in forest ungulates. J Appl Ecol 46:1011-1017. https://doi.org/10.1111/j.1365-2664.2009.01705.x.

Sen Majumder, S., M. Paul, S. Sau, et al. 2016. Denning habits of free-ranging dogs reveal preference for human proximity. Sci Rep 6:32014. https://doi.org/10.1038/srep32014.

Sepúlveda, M. A., C. Pelican, P. Cross, A. Eguren, and S. Randall. 2015. Fine-scale movements of rural free- ranging dogs in conservation areas in the temperate rainforest of the coastal range of southern Chile. Mammalian Biology 80:290-297. https://doi.org/10.1016/j.mambio.2015.03.001.

Shen, D. T., and J. R. Gorham. 1980. Survival of pathogenic distemper virus at 5C and 25C degrees Celsius [Ferrets]. VM SAC. Veterinary Medicine and Small Animal Clinician.

Soto, C. A., and F. Palomares. 2014. Human-related factors regulate the presence of domestic dogs in protected areas. Oryx 49(2). https://doi.org/10.1017/S0030605313000604.

Sparkes, J., G. Körtner, G. Ballard, and P. J. Fleming. 2022. Spatial and temporal activity patterns of owned, free-roaming dogs in coastal eastern Australia. Preventive Veterinary Medicine 204:105641. https://doi.org/10.1016/j.prevetmed.2022.105641.

Vanak, A. T., and M. E. Gompper. 2010. Interference competition at the landscape level: the effect of free-ranging dogs on a native mesocarnivore. J Appl Ecol 47:1225-1232. https://doi.org/10.1111/j.1365-2664.2010.01870.x.

Weyde, L. K. Van Der, C. Mbisana, and R. Klein. 2018. Multi-species occupancy modelling of a carnivore guild in wildlife management areas in the Kalahari. Biological Conservation 220:21-28. https://doi.org/10.1016/j.biocon.2018.01.033.

Yen, S. C., Y. T. Ju, P. J. L. Shaner, and H. L. Chen. 2019. Spatial and temporal relationship between native mammals and free-roaming dogs in a protected area surrounded by a metropolis. Scientific Reports 9(1):1-9. https://doi.org/10.1038/s41598-019-44474-y.

Zapata-Ríos, G., and L. C. Branch. 2016. Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high Andes. Biological Conservation 193:9-16. https://doi.org/10.1016/j.biocon.2015.10.

Patrones de actividad y superposición temporal entre carnívoros nativos y exóticos en remanentes sureños de bosque seco tumbesino en Perú

Descargas

Publicado

2023-05-25

Cómo citar

Pereda Sánchez, A., Calvo Mac, C., Flores Miranda, W. E., De la Puente-León, M., & Cerna-Chihuala, I. G. (2023). Patrones de actividad y superposición temporal entre carnívoros nativos y exóticos en remanentes sureños de bosque seco tumbesino en Perú. Ecología Austral, 33(2), 507–515. https://doi.org/10.25260/EA.23.33.2.0.1985

Número

Sección

Comunicaciones breves