Estado del servicio ecosistémico de polinización en agroecosistemas con cultivos para producción de semilla hortícola

Autores/as

  • Mariana L. Allasino Área de Investigación y Desarrollo Tecnológico para la Agricultura Familiar Región Cuyo, INTA. San Juan, Argentina
  • Juan P. Torretta Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica General. Buenos Aires, Argentina. CONICET
  • Hugo J. Marrero Centro de Recursos Naturales Renovables de la Zona Semiárida, CONICET. Bahía Blanca, Argentina

DOI:

https://doi.org/10.25260/EA.24.34.1.0.2240

Palabras clave:

horticultura, déficit polínico, polinizador, agricultura familiar, polinización entomófila

Resumen

La polinización entomófila incrementa la calidad y la cantidad de frutos y semillas de la mayoría de los principales cultivos del mundo. San Juan es una de las principales provincias argentinas productoras de semilla hortícola; sin embargo, no se cuenta con información que permita asegurar un servicio ecosistémico de polinización óptimo a los cultivos. En este estudio se propuso determinar la influencia de la polinización entomófila en la formación de frutos y en la cantidad y calidad de las semillas de cultivos destinados a producción de semillas de achicoria, cebolla, rabanito, repollo y zapallo. Además, se evaluó si los cultivos exhibían déficit polínico en los lotes estudiados. Para ello, en cada uno de los lotes se evaluó el servicio de polinización de los cultivos a través de un experimento comparativo en el que se contrastó la formación de frutos, el número de semillas formadas por fruto, el peso y el poder germinativo de las semillas mediante diferentes tratamientos de polinización. Se encontró que la polinización entomófila actúa de manera diferencial sobre los parámetros medidos y que tiene un efecto positivo sobre la polinización de los cultivos. Además, los resultados indicaron que la formación de frutos y semillas no estuvo afectada por déficit polínico. El conocimiento alcanzado contribuye a implementar prácticas de manejo orientadas a conservar la entomofauna polinizadora, a mejorar el servicio de polinización de los cultivos y a promover la economía de los agricultores locales.

Citas

Abraham, M., and F. R. Martínez. 2000. Recursos y problemas ambientales de zona árida. Primera Parte: Provincias de Mendoza, San Juan y La Rioja. Caracterización Ambiental. IADIZA, Mendoza, Argentina.

Abrol, D. P. 2010. Foraging behaviour of Apis florea F., an important pollinator of Allium cepa L. Journal of Apicultural Research 49(4):318-325. https://doi.org/10.3896/IBRA.1.49.4.04.

Acosta, A. R., J. C. Gaviola, and C.R. Galmarini. 1994. Producción de semilla de cebolla. La Consulta: Asociación Cooperadora EEA La Consulta. Pp. 83.

Agbagwa, I. O., B. C. Ndukwu, and S. I. Mensah. 2007. Floral biology, breeding system, and pollination ecology of Cucurbita moschata (Duch. ex Lam) Duch. ex Poir. varieties (Cucurbitaceae) from parts of the Niger Delta, Nigeria. Turkish Journal of Botany 31(5):451-458.

Aizen, M. A., and L. D. Harder. 2007. Expanding the limits of the pollen‐limitation concept: effects of pollen quantity and quality. Ecology 88(2):271-281. https://doi.org/10.1890/06-1017.

Aizen, M. A., C. L. Morales, D. P. Vázquez, L. A. Garibaldi, A. Sáez, and L. D. Harder. 2014. When mutualism goes bad: density‐dependent impacts of introduced bees on plant reproduction. New Phytologist 204:322-328. https://doi.org/10.1111/nph.12924.

Aizen, M. A., S. Aguiar, J. C. Biesmeijer, L. A. Garibaldi, D. W. Inouye, C. Jung, C., D. J. Martins, R. Medel, et al. 2019. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Global Change Biology 25(10):3516-3527. https://doi.org/0.1111/gcb.14736.

Ashworth, L., M. Quesada, A. Casas, R. Aguilar, and K. Oyama. 2009. Pollinator-dependent food production in Mexico. Biological Conservation 142(5):1050-1057. https://doi.org/10.1016/j.biocon.2009.01.016.

Bates, D., M. Maechler, B. Bolker, S. Walker, R. H. B. Christensen, H. Singmann, et al. 2021. Package ‘lme4’. Linear Mixed-Effects Models using 'Eigen' and S4. (Version 1.1‐27.1).

Basualdo, M., P. Cavigliasso, R. S. de Avila, P. Aldea-Sánchez, A. Correa-Benítez, J. M. Harms, A. K. Ramos, V. Rojas-Bravo, and S. Salvarrey. 2022. Current status and economic value of insect-pollinated dependent crops in Latin America. Ecological Economics 196:107395. https://doi.org/10.1016/j.ecolecon.2022.107395.

Benjamin, F. E., and R. Winfree. 2014. Lack of pollinators limits fruit production in comercial blueberry (Vaccinium corymbosum). Environmental Entomology 43:1574-1583. https://doi.org/10.1603/EN13314.

Bennett, J. M., J. A. Steets, J. H. Burns, W. Durka,J. C. Vamosi, G. ArceoGómez, M. Burd, L. Burkle, et al. 2018. Data Descriptor: GloPL, a global data base on pollen limitation of plant reproduction. Scientific Data 5:180249. https://doi.org/10.1038/sdata.2018.249.

Brittain, C., N. Williams, C. Kremen, and A. M. Klein. 2013. Synergistic effects of non-Apis bees and honey bees for pollination services. Proceedings of the Royal Society B: Biological Sciences 280(1754):20122767. https://doi.org/10.1098/rspb.2012.2767.

Cane, J. H. 2005. Pollination potential of the bee Osmia aglaia for cultivated red raspberries and blackberries (Rubus: Rosaceae). HortScience 40(6):1705-1708. https://doi.org/10.21273/HORTSCI.40.6.1705.

Canto-Aguilar, M. A., and V. Parra-Tabla. 2000. Importance of conserving alternative pollinators: assessing the pollination efficiency of the squash bee, Peponapis limitaris in Cucurbita moschata (Cucurbitaceae). Journal of insect Conservation 4(3):201-208. https://doi.org/10.1023/A:1009685422587.

Castaño, C. I., M. A. C. Demeulemeester, and M. P. De Proft. 1997. Incompatibility reactions and genotypic identity status of five commercial chicory (Cichorium intybus L.) hybrids. Scientia Horticulturae 72(1):1-9. https://doi.org/10.1016/S0304-4238(97)00111-8.

Cavigliasso, P., F. M. F. Bello, M. F. Rivadeneira, N. O. Monzon, G. B. Gennari, and M. Basualdo. 2020. Pollination efficiency of managed bee species (Apis mellifera and Bombus pauloensis) in highbush blueberry (Vaccinium corymbosum) productivity. Journal of Horticultural Research 28(1):57-64. https://doi.org/10.2478/johr-2020-0003.

Chacoff, N. P., and M. A. Aizen. 2007. Pollination requirements of pigmented grapefruit (Citrus paradisi Macf.) from Northwestern Argentina. Crop Science 47(3):1143-1150. https://doi.org/10.2135/cropsci2006.09.0586.

Chacoff, N. P., M. A. Aizen, and V. Aschero. 2008. Proximity to forest edge does not affect crop production despite pollen limitation. Proceedings of the Royal Society B: Biological Sciences 275(1637):907-913. https://doi.org/0.1098/rspb.2007.1547.

Chacoff, N. P., C. L. Morales, L. A. Garibaldi, L. Ashworth, and M. A. Aizen. 2010. Pollinator dependence of Argentinean agriculture: current status and temporal analysis. The Americas Journal of Plant Science and Biotechnology 3:106-116.

Chandel, Y. S., V. Sagar, and S. Parmar. 2016. Performance of Apis mellifera L. in cabbage hybrid seed production in net houses. Current Science 110(1):8-30.

Cuesta, G., P. Martín, L. F. Guillen, and G. Lemole. 2020. San Juan county horticulture profile. Horticultura Argentina 39(98):35-57.

Coppens d’Eeckenbrugge, G., J. Gobbe, B., and Evrard. 1987. Fertilite. Pp. 21-26 en B. Longly and B. P. Louant (eds.). Mecanismes de la reproduction chez la chicoree de Bruxelles: fondements et applications a la selection. I.R.S.I.A.

Cornejo, A. 2011. Manual técnico: Producción artesanal de semilla de hortalizas para huerta familiar. FAO.

Cruden, R. W. 2000. Pollen grains: why so many? Pollen and Pollination 222(1/4):143-165. https://doi.org/10.1007/BF00984100.

Della Gaspera, P. 2013. Manual del cultivo del zapallo anquito (Cucurbita moschata Duch.) Estación Experimental Agropecuaria La Consulta. Centro Regional Mendoza-San Juan. Instituto Nacional de Tecnología Agropecuaria. I.S.B.N.: 978-987-521-465-1.

Devi, S., R. Gulati, K. Tehri, and A. Poonia. 2015. The pollination biology of onion (Allium cepa L.)-A Review. Agricultural Reviews 36(1):1-13. https://doi.org/10.5958/0976-0741.2015.00001.X.

Fang, Z., Y. Liu, P. Lou, and G. Liu. 2004. Current trends in cabbage breeding. Journal of New Seeds 6(2-3):75-107. https://doi.org/10.1300/J153v06n02_05.

Fox, J., S. Weisberg, D. Adler, D. Bates, G. Baud-Bovy, S. Ellison, and R. Heilberger. 2011. Package “car”: Companion to applied regression. URL: cran. r-project. org.

Gallai, N., J. M. Salles, J. Settele, and B. E. Vaissière. 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics 68(3):810-821. https://doi.org/10.1016/j.ecolecon.2008.06.014.

Garibaldi, L. A., I. Steffan‐Dewenter, C. Kremen, J. M. Morales, R. Bommarco, S. A. Cunningham, et al. 2011. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters 14(10):1062-1072. https://doi.org/10.1111/j.1461-0248.2011.01669.x.

Garibaldi, L. A., L. G. Carvalheiro, S. D. Leonhardt, M. A. Aizen, B. R. Blaauw, R. Isaacs, et al. 2014. From research to action: enhancing crop yield through wild pollinators. Frontiers in Ecology and the Environment 12(8):439-447. https://doi.org/10.1890/130330.

Garibaldi, L. A., S. Aguiar, M. A. Aizen, C. L. Morales, and A. Sáez. 2017. ¿Diversidad o dominancia en la producción de alimentos? El caso de los polinizadores. Ecología Austral 27(3):340-347. https://doi.org/10.25260/EA.17.27.3.0.494.

Garibaldi, L. A., A. Sáez, M. A. Aizen, T. Fijen, and I. Bartomeus. 2020. Crop pollination management needs flower‐visitor monitoring and target values. Journal of Applied Ecology 57(4):664-670. https://doi.org/10.1111/1365-2664.13574.

Garratt, M. P. D., C. L. Truslove, D. J. Coston, R. L. Evans, E. D. Moss, C. Dodson, N. Jenner, J. C. Biesmeijer, and S. G. Potts. 2014. Pollination deficits in UK apple orchards. Journal of Pollination Ecology 12:9-14. https://doi.org/10.26786/1920-7603(2014)8.

Goites, E. 2008. Manual de cultivos para la huerta orgánica familiar. Prohuerta INTA Ed. Pp. 163.

Haedo, J. P., L. C. Martínez, S. Graffigna, H. J. Marrero, and J. P. Torretta. 2022. Managed and wild bees contribute to alfalfa (Medicago sativa) pollination. Agriculture, Ecosystems and Environment 324:107711. https://doi.org/10.1016/j.agee.2021.107711.

Hothorn, T., F. Bretz, P. Westfall, R. M Heiberger, A. Schuetzenmeister, S. Scheibe, and M. T. Hothorn. 2016. Package ‘multcomp’. Simultaneous inference in general parametric models. Project for Statistical

Computing, Vienna, Austria.

Hünicken, P. L., C. L. Morales, N. García, and L. A. Garibaldi. 2020. Insect pollination, more than plant nutrition, determines yield quantity and quality in apple and pear. Neotropical Entomology 49(4):525-532. https://doi.org/10.1007/s13744-020-00763-0.

Hünicken, P. L., C. L. Morales, M. A. Aizen, G. K. Anderson, N. García, and L. A. Garibaldi. 2021. Insect pollination enhances yield stability in two pollinator-dependent crops. Agriculture, Ecosystems and Environment 320:107573. https://doi.org/10.1016/j.agee.2021.107573.

ISTA (International Seed Testing Association). 2015. International rules for seed testing. Seed Science and Technology 27: Supplement, Rules.

Klein, A. M., I. Steffan-Dewenter, and T. Tscharntke. 2003. Fruit set of highland coffee increases with the diversity of pollinating bees. Proceedings of the Royal Society of London. Series B: Biological Sciences 270:955-961. https://doi.org/10.1098/rspb.2002.2306.

Klein, A. M., B. E. Vaissiere, J. H. Cane, I. Steffan-Dewenter, S. A. Cunningham, C. Kremen, and T. Tscharntke. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274(1608):303-313. https://doi.org/10.1098/rspb.2006.3721.

Kremen, C., N. M. Williams, R. L. Bugg, J. P. Fay, and R. W. Thorp. 2004. The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecology Letters 7(11):1109-1119. https://doi.org/10.1111/j.1461-0248.2004.00662.x.

Lautenbach, S., R. Seppelt, J. Liebscher, and C. F. Dormann. 2012. Spatial and temporal trends of global pollination benefit. PLOS ONE 7(4):e35954. https://doi.org/10.1371/journal.pone.0035954.

Lázaro, A., C. Gómez‐Martínez, D. Alomar, M. A. González‐Estévez, and A. Traveset. 2020. Linking species‐level network metrics to flower traits and plant fitness. Journal of Ecology 108(4):1287-1298. https://doi.org/10.1111/1365-2745.13334.

Leishman, M. R. 2001. Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos 93:294-302. https://doi.org/10.1034/j.1600-0706.2001.930212.x.

Loy, B. J. 2004. Morpho-Physiological aspects of productivity and quality in squash and pumpkins (Cucurbita spp.). Critical Reviews in Plant Science 23(4):337-363. https://doi.org/10.1080/07352680490490733.

Mazzolari, A. C. 2017. Análisis de factores que contribuyen a la invasión de rosa mosqueta (Rosa canina y R. rubiginosa) en Mendoza. Doctorado en Ciencias Biológicas. Universidad Nacional de Cuyo. Mendoza, Argentina. Pp. 24-39.

Moles, A. T., and M. Westoby. 2006. Seed size and plant strategy across the whole life cycle. Oikos 113:91-105. https://doi.org/10.1111/j.0030-1299.2006.14194.x.

Morello, J. 2012. Ecorregión del Monte de Sierras y Bolsones. Pp. 265-291 en J. Morello, S. D. Matteucci, A. F. Rodríguez and M. E. Silva (eds.). Ecorregiones y complejos ecosistémicos argentinos. FADU-GEPAMA.

Partap, U., and L. R. Verma. 1994. Pollination of radish by Apis cerana. Journal of Apicultural Research 33(4):237-241. https://doi.org/10.1080/00218839.1994.11100877.

Paudel, Y. P., R. Mackereth, R. Hanley, and W. Qin. 2015. Honey bees (Apis mellifera L.) and pollination issues: current status, impacts, and potential drivers of decline. Journal of Agricultural 7(6):93-109. https://doi.org/10.5539/jas.v7n6p93.

Potts, S. G., J. C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, and W. E Kunin. 2010. Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution 25(6):345-353. https://doi.org/10.1016/j.tree.2010.01.007.

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

Requier, F., K. Antúnez, L. C. Morales, P. Aldea Sánchez, D. Castilhos, P. M. Garrido, A. Giacobino, et al. 2018. Trends in beekeeping and honey bee colony losses in Latin America. Journal of Apicultural Research 57(5):657-662. https://doi.org/10.1080/00218839.2018.1494919.

Roqueiro, G. 2012. La fotooxidación en la semilla de sauce y sus consecuencias en la imbibición y formación de la plántula. Doctorado en Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. Pp. 6-16.

Sáez, A., M. A. Aizen, S. Medici, M. Viel, E. Villalobos, and P. Negri. 2020. Bees increase crop yield in an alleged pollinator-independent almond variety. Scientific Reports 10(1):1-7. https://doi.org/10.1038/s41598-020-59995-0.

Sánchez-Bayo, F., and K. A. Wyckhuys. 2019. Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation 232:8-27. https://doi.org/10.1016/j.biocon.2019.01.020.

Stanton, M. L. 1987. Reproductive biology of petal color variants in wild populations of Raphanus sativus: I. Pollinator response to color morphs. American Journal of Botany 74(2):178-187. https://doi.org/10.1002/j.1537-2197.1987.tb08595.x.

Webber, S. M., M. P. Garratt, M. Lukac, A. P. Bailey, T. Huxley, and S. G. Potts. 2020. Quantifying crop pollinator-dependence and pollination deficits: The effects of experimental scale on yield and quality assessments. Agriculture, Ecosystems and Environment 304:107106. https://doi.org/10.1016/j.agee.2020.107106.

Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag. New York. https://doi.org/10.1007/978-3-319-24277-4.

Young, H. J., and T. P. Young. 1992. Alternative outcomes of natural and experimental high pollen loads. Ecology 73(2):639-647. https://doi.org/10.2307/1940770.

Zur, I., M. Klein, F. Dubert, L. Samek, H. Walligorska, I. Zuradzka, and E. Zawislak. 2003. Environmental factors and genotypic variation of self-incompatibility in Brassica oleracea var. capitata. Acta Biologica Cracoviensia Series Botanica 45(1):49-52.

Zuur, A. F., E. N Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed Effect Models and Extensions in Ecology with R. Springer, New York. https://doi.org/10.1007/978-0-387-87458-6.

Estado del servicio ecosistémico de polinización en agroecosistemas con cultivos para producción de semilla hortícola

Descargas

Archivos adicionales

Publicado

2024-02-15

Cómo citar

Allasino, M. L., Torretta, J. P., & Marrero, H. J. (2024). Estado del servicio ecosistémico de polinización en agroecosistemas con cultivos para producción de semilla hortícola. Ecología Austral, 106–120. https://doi.org/10.25260/EA.24.34.1.0.2240

Número

Sección

Artículos