Estructura y actividad de los ensamblajes de poliquetos en sedimentos contaminados con petróleo (Patagonia, Argentina)

Autores/as

  • Ornella Romanut Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB)
  • Julieta Sturla Lompré Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB). Centro para el Estudio de Sistemas Marinos (CESIMAR-CONICET)
  • Marta Commendatore CCT CONICET-CENPAT
  • Agustina Ferrando Centro para el Estudio de Sistemas Marinos (CESIMAR-CONICET)

DOI:

https://doi.org/10.25260/EA.23.33.3.0.2269

Palabras clave:

indicadores, hidrocarburos, macrobentos, bioturbación, contaminación, impacto antropogénico

Resumen

Una de las herramientas aplicadas para determinar el estado de contaminación y estrés de un ambiente es a través de bioindicadores macrobentónicos. Los objetivos de este estudio fueron 1) validar condiciones experimentales ex situ comparando después de 13 días, diferentes variables fisicoquímicas y biológicas entre tratamientos in situ y ex situ; 2) analizar, a través de un experimento ex situ, el efecto producido por dos concentraciones de petróleo crudo (1 g/kg y 20 g/kg) sobre los ensamblajes de poliquetos de Caleta Sara a diferentes profundidades de la columna sedimentaria (0-8 cm y 8-16 cm), y 3) evaluar la aplicación del concepto de suficiencia taxonómica a los datos del experimento con petróleo crudo. La riqueza, la diversidad, la abundancia y la bioturbación disminuyeron significativamente en los sedimentos contaminados con petróleo solo en el nivel superior. Capitella (Capitellidae) y Boccardia (Spionidae) fueron los más abundantes en la concentración más alta de petróleo. Los resultados a ambos niveles taxonómicos fueron similares, indicando que se podría determinar el efecto del petróleo crudo a nivel de familia, sobre todo si las condiciones ecotoxicológicas son agudas. Sin embargo, la relación familias:géneros fue 1:1 en todos los casos, excepto para Spionidae. Por lo tanto, la identificación a nivel de familia debería ser considerada solo para ensamblajes de poliquetos poco diversos. Este estudio es el primero que evalúa en laboratorio los ensamblajes de poliquetos de Caleta Sara en condiciones modificadas por el petróleo crudo. De este modo, se simulan las condiciones naturales y se evita todo impacto negativo en el sitio de estudio.

Citas

Almeda, R., Z. Wambaugh, Z. Wang, C. Hyatt, Z. Liu, and E. J. Buskey. 2013. Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons. PLoS ONE 8:1-21. https://doi.org/10.1371/journal.pone.0067212.

Alonso-Álvarez, C., C. Pérez, and A. Velando. 2007. Effects of acute exposure to heavy fuel oil from the Prestige spill on a seabird. Aquat Toxicol 84:103-110. https://doi.org/10.1016/j.aquatox.2007.06.004.

Anderson, M., R. N. R. N. Gorley, and K. R. R. Clarke. 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth.

Bacci, T., B. Trabucco, S. Marzialetti, V. Marusso, S. Lomiri, D. Vani, and C. V. Lamberti. 2009. Taxonomic sufficiency in two case studies: Where does it work better? Mar Ecol 30:13-19. https://doi.org/10.1111/j.1439-0485.2009.00324.x.

Baker, J. M. 2001. Oil pollution. Pp. 1999-2007 in J. Steele, S. Thorpe and K. Turekian (eds.). Encyclopedia of Ocean Sciences. Academic Press, San Diego. https://doi.org/10.1006/rwos.2001.0055.

Billen, G. 1978. A budget of nitrogen recycling in North Sea sediments off the Belgian coast. Estuar Coast Mar Sci 7:127-146. https://doi.org/10.1016/0302-3524(78)90070-1.

Blake, J. A., and P. L. Arnofsky. 1999. Reproduction and larval development of the spioniform Polychaeta with application to systematics and phylogeny. Hydrobiologia 402:57-106. https://doi.org/10.1023/A:1003784324125.

Blake, J. A., and J. D. Kudenov. 1981. Larval Development, Larval Nutrition and Growth for Two Boccardia Species (Polychaeta: Spionidae) from Victoria, Australia. Mar Ecol Prog Ser 6:175-182. https://doi.org/10.3354/meps006175.

Bolam, S. G. 2011. Burial survival of benthic macrofauna following deposition of simulated dredged material. Environ Monit Assess 181:13-27. https://doi.org/10.1007/s10661-010-1809-5.

Bonin, P., and J.-C. Bertrand. 1999. Involvement of bioemulsifier in heptadecane uptake in Pseudomonas nautica. Chemosphere 38:1157-1164. https://doi.org/10.1016/S0045-6535(98)00366-X.

Campbell, L., T. Sizmur, F. Juanes, and T. G. Gerwing. 2019. Passive reclamation of soft-sediment ecosystems on the North Coast of British Columbia, Canada. J Sea Res 155:101796. https://doi.org/10.1016/j.seares.2019.101796.

Chainho, P., M. F. Lane, M. L. Chaves, J. L. Costa, M. J. Costa, and D. M. Dauer. 2007. Taxonomic sufficiency as a useful tool for typology in a poikilohaline estuary. Hydrobiologia 587:63-78. https://doi.org/10.1007/s10750-007-0694-6.

Christensen, M., G. T. Banta, and O. Andersen. 2002. Effects of the polychaetes Nereis diversicolor and Arenicola marina on the fate and distribution of pyrene in sediments. Mar Ecol Prog Ser 237:159-172. https://doi.org/10.3354/meps237159.

Commendatore, M. G., and J. L. Esteves. 2007. An assessment of oil pollution in the coastal zone of patagonia, Argentina. Environ Manage 40:814-821. https://doi.org/10.1007/s00267-005-0221-3.

Dauvin, J. C., G. Bellan, and D. Bellan-Santini. 2010. Benthic indicators: From subjectivity to objectivity - Where is the line? Mar Pollut Bull 60:947-953. https://doi.org/10.1016/j.marpolbul.2010.03.028.

Dauvin, J. C., J. L. Gomez Gesteira, and M. Salvande Fraga. 2003. Taxonomic sufficiency: An overview of its use in the monitoring of sublittoral benthic communities after oil spills. Mar Pollut Bull 46:552-555. https://doi.org/10.1016/S0025-326X(03)00033-X.

Doherty-Weason, D., F. Oyarzun, L. Vera, M. Bascur, F. Guzmán, F. Silva, Á. Urzúa, and A. Brante. 2020. Bioenergetics of parental investment in two polychaete species with contrasting reproductive strategies: The planktotrophic Boccardia chilensis and the poecilogonic Boccardia wellingtonensis (Spionidae). Mar Ecol 41:1-9. https://doi.org/10.1111/maec.12574.

Duchêne, J. C. 2000. Effects of poecilogony and delayed larval emission on recruitment of subantarctic population of Boccardia polybranchia (Polychaeta: Spionidae). Bull Mar Sci 67:311-319.

Duport, E., F. Gilbert, J.-C. Poggiale, K. Dedieu, C. Rabouille, and G. Stora. 2007. Benthic macrofauna and sediment reworking quantification in contrasted environments in the Thau Lagoon. Estuar Coast Shelf Sci 72:522-533. https://doi.org/10.1016/j.ecss.2006.11.018.

Elías, R., N. Méndez, P. Muniz, R. Cabanillas, C. Gutiérrez-Rojas, N. Rozbaczylo, M. H. Londoño-Mesa, P. J. Gárate Contreras, M. Cárdenas-Calle, F. Villamar, J. J. A. Laverde-Castillo, K. M. Brauko, M. Araki Braga, P. Da Cunha Lana, and O. Díaz-Díaz. 2021. Los poliquetos como indicadores biológicos en Latinoamérica y el Caribe. Mar Fish Sci 34. https://doi.org/10.47193/mafis.3412021010301.

Ellis, D. V. 1985. Taxonomic sufficiency in pollution assessment. Mar Pollut Bull 16:459. https://doi.org/10.1016/0025-326X(85)90362-5.

Esteves, J. L., and I. Arhex. 2009. Análisis de indicadores de contaminación en la zona costera patagónica. 1a ed. Page (I. Arhex, Ed.). Fundación Patagonia Natural, Puerto Madryn.

Ferrando, A., M. Diez, C. Pastor, and J. L. Esteves. 2019. Response of spionid polychaetes under different concentrations of crude oil in an ex situ experience (Patagonia, Argentina). Hydrobiologia 827:379-389. https://doi.org/10.1007/s10750-018-3787-5.

Ferrando, A., J. L. Esteves, R. Elías, and N. Méndez. 2010. Intertidal macrozoobenthos in sandy beaches of Bahía Nueva (Patagonia, Argentina) and their use as bioindicators of environmental impact. Sci Mar 74:345-352. https://doi.org/10.3989/scimar.2010.74n2345.

Ferrando, A., E. Gonzalez, M. Franco, M. G. Commendatore, M. L. Nievas, C. Militon, G. Stora, F. Gilbert, J. L. Esteves, and P. Cuny. 2015. Oil spill effects on macrofaunal communities and bioturbation of pristine marine sediments (Caleta Valdés, Patagonia, Argentina): Experimental evidence of low resistance capacities of benthic systems without history of pollution. Environ. Sci Pollut Res 22:15294-15306. https://doi.org/10.1007/s11356-015-4167-6.

Ferrando, A., and J. Sturla Lompré. 2020. Caracterización físico-química y biológica de sedimentos marino costeros, sujetos o no a actividades antropogénicas (Golfo Nuevo, Patagonia argentina). Rev del Mus La Plata 5:510-518. https://doi.org/10.24215/25456377e123.

Ferrando, A., J. Sturla Lompré, E. Gonzalez, M. Franco, M. Commendatore, M. Nievas, C. Militon, G. Stora, J. L. Esteves, P. Cuny, and F. Gilbert. 2022. Seasonal composition and activity of the intertidal macrobenthic community of Caleta Valdés (Patagonia, Argentina) applying in situ and ex situ experimental protocols. Reg Stud Mar Sci 53:102444. https://doi.org/https://doi.org/10.1016/j.rsma.2022.102444.

Ferraro, S. P., and F. A. Cole. 1995. Taxonomic level sufficient for assessing pollution impacts on the southern california bight macrobenthos-revisited. Environ Toxicol Chem 14:1031-1040. https://doi.org/10.1002/etc.5620140614.

Field, J., K. Clarke, and R. Warwick. 1982. A Practical Strategy for Analysing Multispecies Distribution Patterns. Mar Ecol Prog Ser 8:37-52. https://doi.org/10.3354/meps008037.

García-Garza, M. E., and J. A. De León-González. 2011. Review of the capitellidae (annelida, polychaeta) from the eastern tropical pacific region, with notes on selected species. Zookeys 151:17-52. https://doi.org/10.3897/zookeys.151.1964.

Gerino, M., R. Aller, C. Lee, and J. Cochran. 1998. Comparison of Different Tracers and Methods Used to Quantify Bioturbation During a Spring Bloom: 234-Thorium, Luminophores and Chlorophyll a. Estuar Coast Shelf Sci 46:531-547. https://doi.org/10.1006/ecss.1997.0298.

Gerwing, T. G., K. Cox, A. M. Allen Gerwing, L. Campbell, T. Macdonald, S. E. Dudas, and F. Juanes. 2020. Varying intertidal invertebrate taxonomic resolution does not influence ecological findings. Estuar Coast Shelf Sci 232:106516. https://doi.org/10.1016/j.ecss.2019.106516.

Gesteira, J. L. G., and J. C. Dauvin. 2005. Impact of the Aegean Sea oil spill on the subtidal fine sand macrobenthic community of the Ares-Betanzos Ria (Northwest Spain). Mar Environ Res 60:289-316. https://doi.org/10.1016/j.marenvres.2004.11.001.

Gibson, G. D. 1997. Variable Development in the Spionid Boccardia proboscidea (Polychaeta) Is Linked to Nurse Egg Production and Larval Trophic Mode. Invertebr Biol 116:213. https://doi.org/10.2307/3226898.

Gilbert, F., L. Rivet, and J. C. Bertrand. 1994. The in vitro influence of the burrowing polychaete Nereis diversicolor on the fate of petroleum hydrocarbons in marine sediments. Chemosphere 29:1-12. https://doi.org/10.1016/0045-6535(94)90084-1.

Gilbert, F., G. Stora, G. Desrosiers, B. Deflandre, J. C. Bertrand, J. C. Poggiale, and J. P. Gagné. 2001. Alteration and release of aliphatic compounds by the polychaete Nereis virens (Sars) experimentally fed with hydrocarbons. J Exp Mar Bio Ecol 256:199-213. https://doi.org/10.1016/S0022-0981(00)00317-8.

Glembocki, N. G., G. N. Williams, M. E. Góngora, D. A. Gagliardini, and J. M. (Lobo) Orensanz. 2015. Synoptic oceanography of San Jorge Gulf (Argentina): A template for Patagonian red shrimp (Pleoticus muelleri) spatial dynamics. J Sea Res 95:22-35. https://doi.org/10.1016/j.seares.2014.10.011.

Helbling, W., and W. Helbling. 2021. Global Change in Atlantic Coastal Patagonian Ecosystems: A journey through time. Springer, Switzerland. https://doi.org/10.1007/978-3-030-86676-1.

Herkül, K., and J. Kotta. 2012. Assessment of the ecological impact of an oil spill on shallow brackish-water benthic communities: A case study in the northeastern Baltic Sea. Est J Ecol 61:173-189. https://doi.org/10.3176/eco.2012.3.02.

Kingston, P. F., and M. J. Riddle. 1989. Cost effectiveness of benthic faunal monitoring. Mar Pollut Bull 20:490-496. https://doi.org/10.1016/0025-326X(89)90135-5.

Kristensen, E., and M. Holmer. 2001. Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO3 and SO42), with emphasis on substrate origin,degradation kinetics, and the role of bioturbation. Geochim. Cosmochim. Acta 65:419-433. https://doi.org/10.1016/S0016-7037(00)00532-9.

Kristensen, E., G. Penha-Lopes, M. Delefosse, T. Valdemarsen, C. O. Quintana, and G. T. Banta. 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285-302. https://doi.org/10.3354/meps09506.

Levin, L. A., and E. L. Creed. 1986. Effect of temperature and food availability on reproductive responses of Streblospio benedicti (Polychaeta: Spionidae) with planktotrophic or lecithotrophic development. Mar Biol Int J Life Ocean Coast Waters 92:103-113. https://doi.org/10.1007/BF00392752.

Lindgren, J. F., I.-M. Hassellöv, and I. Dahllöf. 2014. PAH effects on meio- and microbial benthic communities strongly depend on bioavailability. Aquat Toxicol 146:230-238. https://doi.org/10.1016/j.aquatox.2013.11.013.

Marrero, A., L. Burone, F. García-Rodríguez, E. Brugnoli, M. Rodríguez, and P. Muniz. 2013. Testing taxonomic sufficiency in subtidal benthic communities of an anthropized coastal zone: Río de la Plata (Uruguay). Am J Environ Sci Eng 4:29-45.

Muniz, P., A. M. S. Pires-Vanin, and N. Venturini. 2013. Vertical distribution patterns of macrofauna in a subtropical near-shore coastal area affected by urban sewage. Mar Ecol 34:233-250. https://doi.org/10.1111/maec.12010.

Muniz, P., N. Venturini, A. M. S. Pires-Vanin, L. R. Tommasi, and Á. Borja. 2005. Testing the applicability of a Marine Biotic Index (AMBI) to assessing the ecological quality of soft-bottom benthic communities, in the South America Atlantic region. Mar Pollut Bull 50:624-637. https://doi.org/10.1016/j.marpolbul.2005.01.006.

Olsgard, F., and P. J. Somerfield. 2000. Surrogates in marine benthic investigations - Which taxonomic unit to target? J Aquat Ecosyst Stress Recover 7:25-42. https://doi.org/10.1023/A:1009967313147.

Pearson, T. H., and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Ocean Mar Biol Ann Rev 16:229-311.

Pucci, G., M. Cecilia, A. Acuna, and O. Pucci. 2011. Change in Bacterial Diversity After Oil Spill in Argentina. Pp. 91-108 in P. J. Lopez (ed.). The Importance of Biological Interactions in the Study of Biodiversity. InTech, Argentina. https://doi.org/10.5772/24650.

Quintana, C. O., M. Y. Yoshinaga, and P. Y. G. Sumida. 2010. Benthic responses to organic matter variation in a subtropical coastal area off SE Brazil. Mar Ecol 31:457-472. https://doi.org/10.1111/j.1439-0485.2010.00362.x.

Rivero, M. S., R. Elías, and E. A. Vallarino. 2005. First survey of macroinfauna in the Mar del Plata Harbor (Argentina), and the use of polychaetes as pollution indicators. Rev Biol Mar Oceanogr 40:101-108. https://doi.org/10.4067/s0718-19572005000200002.

Soares-Gomes, A., C. L. T. Mendes, M. Tavares, and L. Santi. 2012. Taxonomic sufficiency of polychaete taxocenes for estuary monitoring. Ecol Indic 15:149-156. https://doi.org/10.1016/j.ecolind.2011.09.030.

Soetaert, K., P. M. J. Herman, and J. J. Middelburg. 1996. A model of early diagenetic processes from the shelf to abyssal depths. Geochim. Cosmochim. Acta 60:1019-1040. https://doi.org/10.1016/0016-7037(96)00013-0.

Solis-Weiss, V., F. Aleffi, N. Bettoso, P. Rossin, G. Orel, and S. Fondaumani. 2004. Effects of industrial and urban pollution on the benthic macrofauna in the Bay of Muggia (industrial port of Trieste, Italy). Sci Total Environ 328:247-263. https://doi.org/10.1016/j.scitotenv.2004.01.027.

Sturla Lompré, J., M. Nievas, M. Franco, V. Grossi, A. Ferrando, C. Militon, F. Gilbert, P. Cuny, G. Stora, M. Sepúlveda, J. Esteves, and M. Commendatore. 2018. Fate of petroleum hydrocarbons in bioturbated pristine sediments from Caleta Valdés (Patagonia Argentina): An ex situ bioassay. Ecotoxicol Environ Saf 162:673-682. https://doi.org/10.1016/j.ecoenv.2018.06.069.

Thompson, B. W., M. J. Riddle, and J. S. Stark. 2003. Cost-efficient methods for marine pollution monitoring at Casey Station, East Antarctica: The choice of sieve mesh-size and taxonomic resolution. Mar Pollut Bull 46:232-243. https://doi.org/10.1016/S0025-326X(02)00366-1.

Timmermann, K., G. T. Banta, L. Klinge, and O. Andersen. 2011. Effects of bioturbation on the fate of oil in coastal sandy sediments: an in situ experiment. Chemosphere 82:1358-1366. https://doi.org/10.1016/j.chemosphere.2010.11.077.

Tsutsumi, H. 2005. Production of Planktonic and Non-planktonic Larvae in a Single Brood of Capitella sp. I and its Implications for Population Persistence in Disturbed Environment due to Organic Enrichment of the Sediments. Benthos Res 60:17-24. https://doi.org/10.5179/benthos1996.60.1_17.

Venturini, N., A. M. S. Pires-Vanin, M. Salhi, M. Bessonart, and P. Muniz. 2011. Polychaete response to fresh food supply at organically enriched coastal sites: Repercussion on bioturbation potential and trophic structure. J Mar Syst 88:526-541. https://doi.org/10.1016/j.jmarsys.2011.07.002.

Venturini, N., L. R. Tommasi, M. C. Bícego, and C. C. Martins. 2004. Characterization of the Benthic Environment of a Coastal Area Adjacent To an Oil Refinery, Todos Os Santos Bay (Ne-Brazil). Brazilian J Oceanogr 52:123-134. https://doi.org/10.1590/s1679-87592004000200004.

Warwick, R. M. 1988. The level of taxonomic discrimination required to detect pollution effects on marine benthic communities. Mar Pollut Bull 19:259-268. https://doi.org/10.1016/0025-326X(88)90596-6.

Estructura y actividad de los ensamblajes de poliquetos en sedimentos contaminados con petróleo (Patagonia, Argentina)

Descargas

Publicado

2023-12-11

Cómo citar

Romanut, O., Sturla Lompré, J., Commendatore, M., & Ferrando, A. (2023). Estructura y actividad de los ensamblajes de poliquetos en sedimentos contaminados con petróleo (Patagonia, Argentina). Ecología Austral, 33(3), 978–992. https://doi.org/10.25260/EA.23.33.3.0.2269