La función de la teoría para mitigar la ‘crisis de reproducibilidad’

Autores/as

  • Luis Marone ECODES (Desert Community Ecology Research Team), IADIZA-CONICET. Mendoza, Argentina. Facultad de Ciencias Exactas y Naturales, UNCuyo. Mendoza, Argentina

DOI:

https://doi.org/10.25260/EA.24.34.1.0.2291

Palabras clave:

hipótesis a priori, mecanismos, rasgos biológicos, reproducibilidad computacional, reproducibilidad empírica, teoría

Resumen

La falta de reproducibilidad de los resultados científicos desafía la confianza en ellos. Se requiere un esfuerzo tendiente a difundir la naturaleza dinámica, aunque no arbitraria, de la evidencia científica, además de instrumentar medidas para aumentar la confianza en los resultados publicados. La reflexión y las acciones dirigidas a evaluar e incrementar la reproducibilidad de las conclusiones científicas suelen estar dirigidas a aumentar la validez de los datos a través de un manejo cuidadoso de su proceso de curación, prestando atención a aspectos empíricos de la puesta a prueba de hipótesis. Sin embargo, estos importantes aspectos no son suficientes porque solo atienden elementos empíricos y técnicos de la prueba (i.e., diseño experimental, datos, análisis estadístico), por lo que deberían complementarse con herramientas teóricas y conceptuales que incrementen la confianza en las conclusiones. Tanto la robustez de los patrones ecológicos como la comprensión de los mecanismos fisiológicos, comportamentales y ecológicos que los causan contribuyen a dar solidez a las conclusiones. La puesta a prueba de hipótesis a priori (e.g., sobre rasgos biológicos funcionales) con evidencia novedosa (y redundante) ofrece a la investigación en ecología el apoyo simultáneo de datos y un entramado teórico actualizado y pertinente, contribuyendo a incrementar la confiabilidad en los resultados que se publican.

Citas

Amara, S. G. 2022. Empower with science. Science 375:699. https://doi.org/10.1126/science.abo5963.

Baker, M., and D. Penny. 2016. Is there a reproducibility crisis? Nature 533:452-454. https://doi.org/10.1038/533452a.

Berg, J. 2018. Progress on reproducibility. Science 359:9. https://doi.org/10.1126/science.aar8654.

Bishop, D. 2019. Rein in the four horsemen of irreproducibility. Nature 568:435. https://doi.org/10.1038/d41586-019-01307-2.

Bissell, M. 2013. The risks of the replication drive. Nature 503:333-334. https://doi.org/10.1038/503333a.

Bunge, M. 1998. Philosophy of science. Revised Edition. Transaction, New York, New York, USA. https://doi.org/10.4324/9781315126371.

Bunge, M. 2012. The correspondence theory of truth. Semiotica 188:65-75. https://doi.org/10.1515/sem-2012-0004.

Camín, S. R., I. Figgini, and L. Marone. 2022. ¿Predicen los rasgos biológicos de las aves su ocupación del gradiente de urbanización en el área metropolitana de Mendoza? Ecología Austral 32:1078-1088. https://doi.org/10.25260/EA.22.32.3.0.1862.

Croci, S., E. Butet, and P. Clergeau. 2008. Does urbanization filter birds on the basis of their biological traits? Condor 110:223-240. https://doi.org/10.1525/cond.2008.8409.

Cueto, V. R., L. Marone, and J. Lopez de Casenave. 2001. Seed preferences by birds: effects of the design of feeding-preference experiments. Journal of Avian Biology 32:275-278. https://doi.org/10.1111/j.0908-8857.2001.320311.x.

Desjardins, E., J. Kurtz, N. Kranke, A. Lindeza, and S. H. Richter. 2021. Beyond standardization: improving external validity and reproducibility in experimental evolution. BioScience 71:543-552. https://doi.org/10.1093/biosci/biab008.

Díaz, S. M., I. Noy-Meir, and M. Cabido. 2001. Can grazing response of herbaceous plants be predicted from simple vegetative traits? Journal of Applied Ecology 38:497-508. https://doi.org/10.1046/j.1365-2664.2001.00635.x.

Editors. 2014. Journals unite for reproducibility. Nature 515:7. https://doi.org/10.1038/515007a.

Farji-Brener, A. G. 2020. ¿18 años no es nada? Una nueva revisión del uso correcto, parcial e incorrecto de los términos ‘hipótesis’ y ‘predicciones’ en ecología. Ecología Austral 30:393-400. https://doi.org/10.25260/EA.20.30.3.0.1129.

Fidler, F., Y. E. Chee, B. C. Wintle, M. A. Burgman, M. A. McCarthy, and A. Gordon. 2017. Metaresearch for evaluating reproducibility in ecology. BioScience 67:282-289. https://doi.org/10.1046/10.1093/biosci/biw159.

Forstmeier, W., E. J. Wagenmakers, and T. H. Parker. 2017. Detecting and avoiding likely false-positive findings – a practical guide. Biological Review 92:1941-1968. https://doi.org/10.1046/10.1111/brv.12315.

Fraser, H., T. Parker, S. Nakagawa, A. Barnett, and F. Fidler. 2018. Questionable research practices in ecology and evolution. PLOS ONE 13:e02000303. https://doi.org/10.1371/journal.pone.0200303.

González del Solar, R., and L. Marone. 2001. The "freezing" of Science: consequences of the dogmatic teaching of ecology. BioScience 51:589-592. https://doi.org/10.1641/0006-3568(2001)051[0683:TFOSCO]2.0.CO;2.

Grau, H. R. 2022. Contra el consenso: Hallazgos que amenazan fundamentos del eco-alarmismo. Ecología Austral 32:33-44. https://doi.org/10.25260/EA.22.32.1.0.1782.

Grau, H. R. 2023. Más hallazgos contra el consenso eco-alarmista. Ecología Austral 33:479-488. https://doi.org/10.25260/EA.23.33.2.0.2158.

Gunawardena, J. 2014. Beware the tail that wags the dog: informal and formal models in biology. Molecular Biology of the Cell 25:3441-3444. https://doi.org/10.1091/mbc.E14-02-0717.

Hempel, C. G. 1966. Philosophy of natural science. Prentice-Hall Inc., New York, New York, USA.

Hutson, M. 2018. Artificial intelligence faces reproducibility crisis. Science 359:725-726. https://doi.org/10.1126/science.359.6377.725.

Ihle, M., I. S. Winney, A. Krystalli, and M. Croucher. 2017. Striving for transparent and credible research: practical guidelines for behavioral ecologists. Behavioral Ecology 28:348-354. https://doi.org/10.1093/beheco/arx003.

Ioannidis, J. P. A. 2014. How to make more published research true. PLOS Medicine 11:1001747. https://doi.org/10.1371/journal.pmed.1001747.

Jennions, M. D, and A. P. Moller. 2002. Publication bias in ecology and evolution: An empirical assessment using the ‘trim and fill’ method. Biological Reviews of the Cambridge Philosophical Society 77:211-222. https://doi.org/10.1017}S1464793101005875.

Kaiser, J. 2021. Key cancer results failed to be reproduced. Science 374:1311. https://doi.org/10.1126/science.acx9788.

Kerr, N. L. 1998. HARKing: Hypothesizing after the results are known. Personality and Social Psychology Review 3:197-217. https://doi.org/10.1207/s15327957pspr0203_4.

Lehrer, J. 2010. The truth wears off. Is there something wrong with the scientific method? The New Yorker 13:52-57 [December].

Leonelli, S. 2016. Data-centric biology. A philosophical study. University of Chicago Press, Chicago, Illinois, USA. https://doi.org/10.1080/14636778.2017.1389263.

Marone, L., and M. Bunge. 1998. La explicación en Ecología. Boletín de la Asociación Argentina de Ecología 7:35-37.

Marone, L., and L. Galetto. 2011. El doble papel de las hipótesis en la investigación ecológica y su relación con el método hipotético deductivo. Ecología Austral 21:201-216.

Marone, L., and S. R. Camín. 2022. Seed preferences suggest a high vulnerability of the Yellow Cardinal (Gubernatix cristata) to habitat degradation in Argentina. Emu 3-4:208-215. https://doi.org/10.1080/01584197.2022.2112696.

Marone, L., J. Lopez de Casenave, and V. R. Cueto. 2000. Granivory in the southern South American deserts: conceptual issues and current evidence. BioScience 50:123-132. https://doi.org/10.1641/0006-3568(2000)050[0123:GISSAD]2.3.CO;2.

Marone, L., J. Lopez de Casenave, and R. González del Solar R. 2019. The synthetic thesis of truth helps mitigate the reproducibility crisis and is an inspiration for predictive ecology. Journal of Humanities of Valparaíso 14:366-373. https://doi.org/10.22370/rhv2019iss14pp363-376.

Marone, L., V. R. Cueto, J. Lopez de Casenave, A. Zarco, and S. R. Camín. 2022. Plausible causes of seed preferences and diet composition in seed-eating passerines. Journal of Avian Biology 2021:e02875. https://doi.org/10.1111/jav.02875.

Martin, T. G., and H. P. Possingham. 2005. Predicting the impact of grazing on birds using foraging height data. Journal of Applied Ecology 42:400-408. https://doi.org/10.1111/j.1365-2664.2005.01012.x.

McCord, S. E., N. P. Webb, J. W. Van Zee, S. H. Burnett, E. M. Christensen, E. M. Courtright, et al. 2021. Provoking a cultural shift in data quality. BioScience 71: 647-657. https://doi.org/10.1093/biosci/biab020.

McNutt, M. 2014. Reproducibility. Science 343:229. https://doi.org/10.1126/science.1250475.

Mitchell, M. S., S. N. Sells, K. J. Barker, S. B. Bassing, A. C. Keever, S. C. Forshee, and J. W. Goerz. 2018. Testing a priori hypotheses improves the reliability of wildlife research. Journal of Wildlife Management 82:1568-1571. https://doi.org/10.1002/jwmg.21568.

Munafó, M. R, and G. D. Smith. 2018. Repeating experiments is not enough. Nature 553:399-401. https://doi.org/10.1038/d41586-018-01023-3.

Nichols, J. D., W. L. Kendall, and G. S. Boomer. 2019. Accumulating evidence in ecology: Once is not enough. Ecology and Evolution 9:13991-14004. https://doi.org/10.1002/ece3.5836.

Oza, A. 2023. Reproducibility goes on trial in ecology. Nature 622:677-678. https://doi.org/10.1038/d41586-023-03177-1.

Parker, T. H, E. Main, S. Nakagawa, J. Gurevitch, F. Jarrad, and M. Burgman. 2016. Promoting transparency in conservation science. Conservation Biology 30:1149-1150. https://doi.org/10.1111/cobi.12760.

Peng, R. D. 2011. Reproducible research in computational science. Science 334:1226-1227. https://doi.org/10.1126/science.1213847.

Perez-Velázquez, J. L. 2019. The rise of the scientist-bureaucrat. Springer, New York, New York, USA. https://doi.org/10.1007/978-3-030-12326-0.

Popper, K. 1959. The logic of scientific discovery. Basic Books, New York, New York, USA.

Powers, S. M., and S. E. Hampton. 2019. Open science, reproducibility, and transparency in ecology. Ecological Applications 29:e01822. https://doi.org/10.1002/eap.1822.

Roper, W. L. 2022. Science, health, and truth. Science 377:7. https://doi.org/10.1126/science.add6477.

Sagario, M. C., V. R. Cueto, A. Zarco, R. G. Pol, and L. Marone. 2020. Predicting how seed-eating passerines respond to cattle grazing in a semi-arid grassland using seed preferences and diet. Agriculture, Ecosystems and Environment 289:e106736. https://doi.org/10.1016/j.agee.2019.106736.

Seymour, C. I., and W. R. J. Dean. 2010. The influence of change of habitat structure on the species composition of bird assemblages in the southern Kalahari. Austral Ecology 35:581-592. https://doi.org/10.1111/j.1442-9993.2009.02069.x.

Sikorski, M. 2022. Is forensic science in crisis? Synthese 200:188. https://doi.org/10.1007/s11229-022-03685-z.

Sol, D., J. Maspons, M. Vall-llosera, I. Bartomeus, G. E. García-Peña, J. Piñol, and R. P. Freckleton. 2012. Unraveling the life history of successful invaders. Science 337:580-583. https://doi.org/10.1126/science.1221523.

Werner, E. E. 1998. Ecological experiments and a research program in community ecology. Pp. 3-26 in W. J. Resetarits and J. Bernardo (eds.). Experimental ecology. Issues and perspectives. Oxford University Press. New York.

La función de la teoría para mitigar la ‘crisis de reproducibilidad’

Descargas

Publicado

2024-02-15

Cómo citar

Marone, L. (2024). La función de la teoría para mitigar la ‘crisis de reproducibilidad’. Ecología Austral, 34(1), 134–140. https://doi.org/10.25260/EA.24.34.1.0.2291