El estado trófico de los arroyos andino-patagónicos en un gradiente de urbanización

Autores/as

  • Magalí Rechencq Grupo de Evaluación y Manejo de Recursos Ícticos (GEMaRI), Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) (Universidad Nacional del Comahue-CONICET). San Carlos de Bariloche, Río Negro, Argentina https://orcid.org/0000-0002-1190-7279
  • María V. Fernández Grupo de Evaluación y Manejo de Recursos Ícticos (GEMaRI), Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) (Universidad Nacional del Comahue-CONICET). San Carlos de Bariloche, Río Negro, Argentina https://orcid.org/0000-0001-8075-1215
  • Mailén E. Lallement Instituto de Tierras, Agua y Medio Ambiente (Universidad Nacional del Comahue). Neuquén, Argentina https://orcid.org/0000-0002-0910-0732
  • Marcelo F. Alonso GEMaRI, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue. San Carlos de Bariloche, Río Negro, Argentina
  • Patricio J. Macchi Grupo de Evaluación y Manejo de Recursos Ícticos (GEMaRI), Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) (Universidad Nacional del Comahue-CONICET). San Carlos de Bariloche, Río Negro, Argentina
  • Alejandro Sosnovsky Grupo de Evaluación y Manejo de Recursos Ícticos (GEMaRI), Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) (Universidad Nacional del Comahue-CONICET). San Carlos de Bariloche, Río Negro, Argentina https://orcid.org/0000-0001-8615-389X

DOI:

https://doi.org/10.25260/EA.24.34.3.0.2342

Palabras clave:

eutrofización, nitrógeno, fósforo, perifiton, ecosistemas fluviales, población

Resumen

Los arroyos andinos norpatagónicos son ecosistemas oligotróficos y fluyen por cuencas de drenaje poco impactadas. Sin embargo, esto cambió con el tiempo por la urbanización de dichas cuencas. Este trabajo propone determinar el estado trófico de arroyos ubicados en un gradiente de urbanización. Para ello se utilizaron como variables indicadoras de urbanización de la cuenca de drenaje la densidad poblacional y el porcentaje de su área modificada. Además, se evaluó la relación de estas variables con la concentración y la exportación de nutrientes totales, nitrógeno (NT) y fósforo (PT), y con la biomasa de la comunidad autotrófica del perifiton. Se muestrearon por única vez 12 arroyos situados en cuencas de drenaje pertenecientes a la ciudad de San Carlos de Bariloche y zonas aledañas durante el período hidrológico basal. Los arroyos presentaron tres estados tróficos: oligotrófico, mesotrófico y eutrófico. Se observó una relación positiva entre las variables de la cuenca y la concentración de ambos nutrientes en los ecosistemas fluviales. El incremento de la urbanización se reflejó también en un aumento de la biomasa autotrófica de la comunidad de perifiton. Tomando al PT como indicador de eutrofia, los arroyos urbanos estudiados cambiaron su estado trófico de oligotrófico a mesotrófico cuando la población alcanzaba los 241 habitantes/km2 o el área modificada llegaba al 32%. En cuanto a la exportación de nutrientes, solo resultaron significativas las relaciones entre el NT y las variables de urbanización de las cuencas. Teniendo en cuenta el período hidrológico de estudio y las características de las cuencas, se sugiere que el nitrógeno ingresa, sobre todo, a través del agua subterránea, y no así el PT. Se puede concluir que el deterioro de los ecosistemas fluviales se condice con un incremento de la urbanización en las cuencas de la Patagonia Andina.

Citas

A.P.H.A. 2005. Standard methods for the examination of water and wastewater. 21th edition. American Public Health Association, Washington (DC), U.S.A.

Ahearn, D. S., R. W. Sheibley, R. A. Dahlgren, and K. E. Keller. 2004. Temporal dynamics of stream water chemistry in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology 295:47-63. https://doi.org/10.1016/j.jhydrol.2004.02.016.

Albariño, R. J., V. Díaz Villanueva, and L. Buria. 2009. Leaf litter dynamics in a forested small Andean catchment, northern Patagonia, Argentina. Pp. 183-211 en C. Oyarzún, N. E. C. Verhoest, P. Boeckx, and R. Godoy (eds.). Ecological Advances on Chilean Temperate Rainforest. Academia Press, Ghent, East Flanders, Belgium.

Allan, D. J., M. M. Castillo, and K. A. Capps. 2021. Nutrient dynamics. Pp. 383-420 en Stream Ecology Structure and Function of Running Waters. Springer, Cham, Zug, Switzerland. https://doi.org/10.1007/978-3-030-61286-3.

Ambiental, C. D. 2016. Estado de Situación y acciones sugeridas. Tratamiento de Efluentes Cloacales. ORDENANZA N° 2535/15, Comisión de Desarrollo Ambiental, Junín de los Andes, Neuquén, Argentina.

Arnold, C. L., and C. J. Gibbons. 1996. Impervious surface coverage: the emergence of a key environmental indicator. Journal of the American Planning Association 62:243-258. https://doi.org/10.1080/01944369608975688.

Bariloche Municipio. 2021. Crecimiento poblacional de San Carlos de Bariloche. URL1: tinyurl.com/ytva2zce. URL2: tinyurl.com/scrjp7pk.

Beal, C. D., E. A. Gardner, and N. W. Menzies. 2005. Process, performance, and pollution potential: a review of septic tank-soil absorption systems. Australian Journal of Soil Research 43:781-802. https://doi.org/10.1071/SR05018.

Biggs, B. J. F., and C. Kilroy. 2000. Stream Periphyton Monitoring Manual. NIWA, Christchurch, Canterbury, New Zealand.

Brown, L. E., D. M. Hannah, and A. M. Milner. 2003. Alpine Stream Habitat Classification: An Alternative Approach Incorporating the Role of Dynamic Water Source Contributions. Artic, Antartic, and Alpine Research 35:313-322. https://doi.org/10.1657/1523-0430(2003)035[0313:ASHCAA]2.0.CO;2.

Brown, L. R., R. H. Gray, R. M. Hughes, and M. R. Meador. 2005. Introduction to Effects of Ubanization on Stream Ecosystems. Pp. 1-10 en L. R. Brown, R. H. Gray, R. M. Hughes and M. R. Meador (eds.). Effects of ubanization on stream ecosystems. American Fisheries Society, Bethesda, Maryland, U.S.A. https://doi.org/10.47886/9781888569735.

Cuassolo, F., and V. Díaz Villanueva. 2019. Exóticas en humedales: Análisis de las comunidades vegetales de mallines naturales y urbanos en la ciudad de Bariloche. Ecología Austral 29:405-415. https://doi.org/10.25260/EA.19.29.3.0.853.

Díaz, M. M., F. L. Pedrozo, C. S. Reynolds, and P. F. Temporetti. 2007. Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37:17-27. https://10.1016/j.limno.2006.08.006.

Díaz, S., J. Settele, E. Brondízio, H. T. Ngo, M. Guéze, J. Agard, A. Arneth, P. Balvanera, L. Garibaldi, et al. 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), Bonn, Renania, Alemania.

Díaz Villanueva, V., and R. Albariño. 2021. Una aproximación al funcionamiento de los arroyos de montaña del norte de la Patagonia Andina. Ecología Austral 31:129-147. https://doi.org/10.25260/EA.21.31.1.0.1353.

Diehl, P., M. J. Mazzarino, and S. Fontenla. 2008. Plant limiting nutrients in Andean-Patagonian woody species: effects of interannual rainfall variation, soil fertility and mycorrhizal infection. Forest Ecology and Management 225:2793-2980. https://doi.org/10.1016/j.foreco.2008.02.003.

Diehl, P., M. J. Mazzarino, F. Funes, S. Fontenla, M. Gobbi, and J. Ferrari. 2003. Nutrient conservation strategies in native Andean-Patagonian forests. Journal of Vegetation Science 14:63-70. https://doi.org/10.1111/j.1654-1103.2003.tb02128.x.

Diodato, S. L., G. González Garraza, R. Mansilla, A. Moretto, J. Escobar, A. Méndez-López, J. Marcovecchio, and J. C. Nóvoa-Muñoz. 2020. Quality changes of fluvial sediments impacted by urban effluents in Ushuaia, Tierra del Fuego, southernmost Patagonia. Envirnonmental Earth Sciences 79. https://doi.org/10.1007/s12665-020-09236-4.

Dodds, W. K. 2006. Eutrophication and trophic state in rivers and streams. Limnology and Oceanography 51:671-680. https://doi.org/10.4319/lo.2006.51.1_part_2.0671.

Dodds, W. K., and V. H. Smith. 2016. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 6:155-164. https://doi.org/10.5268/IW-6.2.909.

EPRI. 2000. National Research Needs Conference Proceedings: Risk based decision making for onsite wastewater treatment. Project: 2001 1101446, Environmental Proteccion Agency and National Descentralized Water Resources Capacity Development Palo Alto, California. U.S.A.

Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, et al. 2005. Global Consequences of Land Use. Science 309:570-574. https://doi.org/10.1126/science.1111772.

García, D. R., M. C. Diéguez, P. E. García, and M. Reissig. 2023. Spatial and temporal patterns in the chemistry of temperate low order Andean streams: effects of landscape gradients and hydrology. Aquatic Sciences 85:102. https://doi.org/10.1007/s00027-023-01001-6.

García, D. R., M. C. Diéguez, M. Gerea, and P. E. García. 2018. Characterisation and reactivty continuum of dissolved organic matter in forested headwater catchments of Andean Patagonia. Freshwater Biology 63:1049-1062. https://doi.org/10.1111/fwb.13114.

García, R. D., M. Reissig, C. P. Queimaliños, P. E. García, and M. C. Diéguez. 2015. Climate-driven terrestrial inputs in ultraoligotrophic mountain streams of Andean Patagonia revealed through chromophoric and fluorescent dissolved organic matter. Science of the Total Environment 521-522:280-292. https://doi.org/10.1016/j.scitotenv.2015.03.102.

Golterman, H. L., R. S. Clymo, and M. A. M. Ohnstad. 1978. Methods for Physical and Chemical Analysis of Fresh Waters. 2nd edition. Blackwell Scientific Publications, Oxford, England, UK. https://doi.org/10.1002/iroh.19800650113.

Granitto, M., S. L. Diodato, and P. Rodríguez. 2021. Water quality index including periphyton chlorophyll-a in forested urban watersheds from Tierra del Fuego (Argentina). Ecological Indicators 126. https://doi.org/10.1016/j.ecolind.2021.107614.

GraphPad, P. 2020. GraphPad Prism 8.0 User Guide. GraphPad Software Inc., Boston, Massachusetts, USA. URL: graphpad.com.

Grasshoff, M., K. Ehrhardt, and K. Kremling. 1983. Methods of seawater analysis. 2nd edition. Wiley, New York, New York, U.S.A.

Green, M. B., J. L. Nieber, G. Johnson, J. Magner, and B. Schaefer. 2007. Flow path influence on an N:P ratio in two headwater streams: a paired watershed study. Journal of Geophysical Research 112:G03015. https://doi.org/10.1029/2007JG000403.

Herschy, R. 1993. The velocity-area method. Flow Measurement and Instrumentation 4:7-10. https://doi.org/10.1016/0955-5986(93)90004-3.

Hilton, J., M. O´Hare, M. J. Bowes, and J. I. Jones. 2006. How green is my river? A new paradigm of eutrophication in rivers. Science of the Total Environment 365:66-83. https://doi.org/10.1016/j.scitotenv.2006.02.055.

Hintze, J. L. 1998. Number Cruncher Statistical System (NCSS). Version 2000. User´s Guide. NCSS, Kaysville, Utah, U.S.A.

Hynes, H. B. N. 1960. The biology of polluted waters. 1st edition. Liverpool Univ. Press, Liverpool, England, UK.

Hynes, H. B. N. 1975. The stream and its valley. Verhandlungen der Internationale Vereingung für Limnologie 19:1-15. https://doi.org/10.1080/03680770.1974.11896033.

INDEC. 2022. National Institute of Statistical and Census. URL: tinyurl.com/5f3jwxrt.

Le Moal, M., C. Gascuel-Odoux, A. Ménesguen, Y. Souchon, C. Étrillard, A. Levian, F. Moatar, A. Pannard, P. Souchu, et al. 2019. Eutrophication: A new wine in an old bottle? Science of the Total Environment 651:1-11. https://doi.org/10.1016/j.scitotenv.2018.09.139.

Likens, G. E. 2001. Biogeochemistry, the watershed approach: some uses and limitations. Marine and Freshwater Research 52:5. https://doi.org/10.1071/MF99188.

Llanes, A. L., M. Poca, Y. G. Jimenez, G. Castellanos, B. M. Gómez, M. Marchese, N. B. Lana, M. A. Pascual, R. Albariño, et al. 2022. ¿De dónde viene y a dónde va el agua de las ciudades? Base de datos integrada para 243 centros urbanos argentinos. Ecología Austral 32:1133-1149. https://doi.org/10.25260/EA.22.32.3.0.2028.

Manzo, L. M., L. B. Epele, C. N. Horak, Y. A. Assef, and M. L. Miserendino. 2022. Variability in Nutrient Dissipation in a Wastewater Treatment Plant in Patagonia: A Two-Year Overview. Environmental Management. https://doi.org/10.1007/s00267-022-01761-1.

Manzo, L. M., L. B. Epele, C. N. Horak, M. A. Kutschker, and M. L. Miserendino. 2020. Engineered ponds as environmental and ecological solutions in the urban water cycle: a case study in Patagonia. Ecological Engineering 154:105915. https://doi.org/10.1016/j.ecoleng.2020.105915.

Maro, C. 2016. Relevamiento del Saneamiento Público en la Patagonia Argentina. Trabajo Final. Universidad Nacional de Río Negro, Sede Andina, Río Negro. Argentina. Pp. 53.

Martínez, D., E. Moschione, E. Bocanegra, M. Glok Galli, and R. Aravena. 2014. Distribution and origin of nitrate in groundwater in a urban and suburban aquifer in Mar del Plata, Argentina. Environmental Earth Sciences 72:1877-1886. https://doi.org/10.1007/s12665-014-3096-x.

Minshall, G. W. 1988. Stream ecosystem theory: a global perspective. Journal of the North American Benthological Society 8:263-288. https://doi.org/10.2307/1467294.

Miserendino, M. L., C. Brand, and Y. C. Di Prinzio. 2008. Assessing Urban Impacts on Water Quality, Benthic Communities and Fish in Streams of the Andes Mountains, Patagonia (Argentina). Water Air Soil Pollution 194:91-110. https://doi.org/10.1007/s11270-008-9701-4.

Miserendino, M. L., M. A. Kutschker, C. Brand, L. La Manna, Y. C. Di Prinzio, G. Papazian, and J. Bava. 2016. Ecological Status of a Patagonian Mountain River: Usefulness of Environmental and Biotic Metrics for Rehabilitation Assessment. Environmental Management 57:1166-1187. https://doi.org/10.1007/s00267-016-0688-0.

Modenutti, B. E., R. J. Albariño, M. Bastidas Navarro, V. D. Villanueva, A. F. Souza, C. Trochine, C. Laspoumaderes, F. Cuassolo, G. Mariluán, et al. 2010. Structure and dynamic of food webs in Andean North Patagonian freshwater systems: organic matter, light and nutrient relationships. Ecología Austral 20:95-114.

Modenutti, B. E., E. G. Balseiro, M. C. Diéguez, C. P. Queimaliños, and R. J. Albariño. 1998. Heterogeneity of fresh-water Patagonian ecosystems. Ecología Austral 8:155-165.

Paruelo, J. M., A. Beltrán, E. Jobbágy, O. Sala, and R. Golluscio. 1998. The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8:85-101.

Paul, M. J., and J. L. Meyer. 2001. Streams in the Urban Landscape. Annual Review of Ecology, Evolution and Systematics 32:333-365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040.

Pedrozo, F. L., S. Chillrud, P. F. Temporetti, and M. M. Díaz. 1993. Chemical composition and nutrient limitation in rivers and lakes of Northern Patagonian Andes (39.5º-42º S; 71º W) (Rep. Argentina). SIL Proceedings 1922-2010 25:207-214. https://doi.org/10.1080/03680770.1992.11900093.

Peñuelas, J., B. Poulter, J. Sardans, P. Ciais, M. van der Velde, L. Bopp, O. Boucher, Y. Godderis, P. Hinsinger, et al. 2013. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications 4:2934. https://doi.org/10.1038/ncomms3934.

Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks, and J. C. Stromberg. 1997. The Natural Flow Regime A paradigm for River Conservation and Restoration. Bioscience 47:769-784. https://doi.org/10.2307/1313099.

Raymond, P. A., J. E. Saiers, and W. V. Sobczak. 2016. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97:5-16. https://doi.org/10.1890/14-1684.1.

Reid, B. L., A. Astorga, I. Madriz, and C. Correa. 2021. Estado del conocimiento y conservación de los ecosistemas dulceacuícolas de la Patagonia Occidental Austral. Pp. 429-471 en J. C. Castilla, J. J. Armesto and M. J. Martínez-Harms (eds.). Conservación en la Patagonia chilena: evaluación del conocimiento, oportunidades y desafíos. Universidad Católica, Santiago, Metropolitana, Chile.

Relva, M. A., M. A. Damascos, P. J. Macchi, P. Mathiasen, A. C. Premoli, M. P. Quiroga, N. I. Rodovani, E. Raffaele, P. Sackmann, et al. 2014. Impactos Humanos en la Patagonia. Pp. 157-182 en E. Raffaele, M. de Torres Curth, C. L. Morales, and T. Kitzberger (eds.). Ecolgía e Historia Natural de la Patagonia Andina: un cuarto de siglo de investigación en biogeografía, ecología y conservación. Fundación De Historia Natural Félix de Azara, C.A.B.A. Argentina.

Russell, M. J., D. E. Weller, and T. E. Jordan. 2008. Net anthropogenic phosphorus inputs: spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 88:285-304. https://doi.org/10.1007/s10533-008-9212-9.

Sartory, D. P., and J. U. Grobbelaar. 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114:177-187. https://doi.org/10.1007/BF00031869.

Satti, P., M. J. Mazzarino, and M. Gobbi. 2003. Soil N dynamics in relation to leaf litter quality and soil fertility in North-Western Patagonian forests. Journal of Ecology 91:173-181. https://doi.org/10.1046/j.1365-2745.2003.00756.x.

Snelder, T. H., and B. J. F. Biggs. 2002. Multiscale river environment classification for water resources management. Journal of the American Water Resources Association 38:1225-1239. https://doi.org/10.1111/j.1752-1688.2002.tb04344.x.

Sokal, R. R., and F. J. Rohlf. 1995. Biometry: The principles and practice of statistics in biological research. 3rd edition. Freeman W. H. and Co., New York, New York, U.S.A.

Sosnovsky, A., M. E. Lallement, M. Rechencq, M. V. Fernández, E. E. Zattara, and C. S. Feijoó. 2023. Nutrient export and population density relationships in a stream-lake basin from the Patagonian Andean Region. New Zealand Journal of Marine and Freshwater Research 57:438-446. https://doi.org/10.1080/00288330.2021.1993449.

Sosnovsky, A., M. Rechencq, V. Fernández, M. J. Suarez, and R. J. C. Cantet. 2020. Hydrological and physico-chemical dynamics in two Andean streams. Limnetica 39:17-33. https://doi.org/10.23818/limn.39.02.

Soto, D. 2002. Oligotrophic patterns in Chilean lakes: the relevance of nutrients and mixing depth. Revista Chilena de Historia Natural 75:377-393. https://doi.org/10.4067/S0716-078X2002000200009.

Suplee, M. W., V. Watson, M. Teply, and H. McKee. 2009. How green is too green? Public opinion of what constitutes undesirable algae levels in streams. Journal of the American Water Resources Association 45:123-140. https://doi.org/10.1111/j.1752-1688.2008.00265.x.

Tate, K. W., and M. J. Singer. 2013. Timing, Frecuency of Sampling Affect Accuracy of Water-Quality Monitoring. California Agriculture 53:44-48. https://doi.org/10.3733/ca.v053n06p44.

Weigelhofer, G., T. Hein, and E. Bondar-Kunze. 2018. Phosphorus and Nitrogen Dynamics in Riverine Systems: Human Impacts and Management Options. Pp. 187-202 en S. Schmutz and J. Sendzimir (eds.). Riverine Ecosystem Management, Science for Governing Towards a Sustainable Future. Springer, Cham, Zug, Switzerland. https://doi.org/10.1007/978-3-319-73250-3_10.

Willimas-Subiza, E. A., Y. A. Assef, and C. Brand. 2021. Point source pollution influences water quality of Patagonian streams more than land cover. River Research and Applications. https://doi.org/10.1002/rra.3881.

Wurtsbaugh, W. A., H. W. Paerl, and W. K. Dodds. 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water 6. https://doi.org/10.1002/wat2.1373.

El estado trófico de los arroyos andino-patagónicos en un gradiente de urbanización

Descargas

Publicado

2024-09-01

Cómo citar

Rechencq, M., Fernández, M. V., Lallement, M. E., Alonso, M. F., Macchi, P. J., & Sosnovsky, A. (2024). El estado trófico de los arroyos andino-patagónicos en un gradiente de urbanización. Ecología Austral, 422–434. https://doi.org/10.25260/EA.24.34.3.0.2342

Número

Sección

Artículos