Caracterización de arroyos en cuencas con y sin manejo forestal en Tierra del Fuego, Argentina

Autores/as

  • María E. Lopez Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA), Universidad Nacional de Tierra del Fuego (UNTDF). Administración de Parques Nacionales (APN)
  • Eduardo Domínguez Instituto de Biodiversidad Neotropical (IBN), CONICETFacultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT)
  • Christopher B. Anderson Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA), Universidad Nacional de Tierra del Fuego (UNTDF)

DOI:

https://doi.org/10.25260/EA.24.34.3.0.2395

Palabras clave:

manejo forestal, arroyos subantárticos, Tierra del Fuego

Resumen

Las cuencas hidrográficas del archipiélago fueguino albergan los bosques más australes del mundo y constituyen un mosaico complejo de ambientes. Pese a ser considerada una ecorregión prístina, los ecosistemas de la Patagonia Austral enfrentan perturbaciones múltiples; entre ellas, el manejo forestal. El 80% de la actividad forestal de la provincia de Tierra del Fuego se concentra en el centro de la región cordillerana, incluyendo áreas de bosque de Nothofagus pumilio. El objetivo de este estudio es entender la relación entre los arroyos fueguinos y el aprovechamiento forestal. Se eligieron arroyos en cuencas con (n=5) y sin (n=4) manejo forestal para investigar los efectos del aprovechamiento sobre las condiciones abióticas y los recursos basales del hábitat de los arroyos. Los nueve arroyos se estudiaron en verano, otoño y primavera. En general, nuestros resultados revelaron que los arroyos de cabecera que atraviesan los bosques subantárticos fueguinos están muy dominados por un régimen estacional. Ejemplos de esto fueron el caudal y la comunidad epilítica. Sin embargo, a pesar de mantenerse una franja de bosque ribereño en zonas de aprovechamiento, establecido por ley, la actividad forestal afectó las condiciones generales de la cuenca. En particular, se observa un aumento de nutrientes en cuencas con manejo forestal y una dinámica diferencial de la materia orgánica bentónica. Nuestro trabajo aporta información sobre la dinámica y la variación natural de los arroyos fueguinos. Además, en cuanto al efecto del manejo forestal, evidencia la necesidad de un monitoreo que contemple las características de la ribera (ancho y estructura vegetal), la antigüedad del evento de tala y el tipo de manejo forestal aplicado en la cuenca. Las medidas de conservación de los ambientes fluviales deben contemplar tanto el ambiente acuático como la integridad de la cuenca.

Citas

Allan, J. D., and M. M. Castillo. 2007. Stream ecology: structure and function of running waters. Springer Science and Business Media. URL: bit.ly/3YQwcuK.

Anderson, C. B., and A. D. Rosemond. 2007. Ecosystem engineering by invasive exotic beavers reduces in-stream diversity and enhances ecosystem function in Cape Horn, Chile. Oecologia 154(1):141-153. https://doi.org/10.1007/s00442-007-0757-4.

Anderson, C. B., G. Martínez Pastur, M. V. Lencinas, P. K. Wallem, M. C. Moorman, and A. D. Rosemond. 2009. Do introduced North American beavers Castor canadensis engineer differently in southern South America? An overview with implications for restoration. Mammal Review 39(1):33-52. https://doi.org/10.1111/j.1365-2907.2008.00136.x.

Anderson, C. B., and A. D. Rosemond. 2010. Beaver invasion alters terrestrial subsidies to subantarctic stream food webs. Hydrobiologia 652(1):349-361. https://doi.org/10.1007/s10750-010-0367-8.

APHA. 2017. Standard methods for the examination of water and wastewater. APHA, Washington, DC

Bahar, M. M., H. Ohmori, and M. Yamamuro. 2008. Relationship between river water quality and land use in a small river basin running through the urbanizing area of Central Japan. Limnology 9(1):19-26. https://doi.org/10.1007/s10201-007-0227-z.

Brand, C., and M. L. Miserendino. 2011. Characterizing Trichoptera trophic structure in rivers under contrasting land use in Patagonia, Argentina. Zoosymposia 5(1):29-40. https://doi.org/10.11646/zoosymposia.5.1.3.

Burdon, F. J., and J. S. Harding. 2008. The linkage between riparian predators and aquatic insects across a stream‐resource spectrum. Freshwater Biology 53(2):330-346. https://doi.org/10.1111/j.1365-2427.2007.01897.x.

Campbell, I. C., and T. J. Doeg. 1989. Impact of timber harvesting and production on streams: a review. Marine and Freshwater Research 40(5):519-539. https://doi.org/10.1071/mf9890519.

Contador, T., J. H. Kennedy, R. Rozzi, and J. O. Villarroel. 2015. Sharp altitudinal gradients in Magellanic Sub-Antarctic streams: patterns along a fluvial system in the Cape Horn Biosphere Reserve (55 S). Polar Biology 38(11):1853-1866. https://doi.org/10.1007/s00300-015-1746-4.

Danehy, R. J., S. S. Chan, G. T. Lester, R. B. Langshaw, and T. R. Turner. 2007. Periphyton and macroinvertebrate assemblage structure in headwaters bordered by mature, thinned, and clearcut Douglas-fir stands. Forest Science 53(2):294-307. https://doi.org/10.1080/03680770.2009.11923914.

Di Marco, Moreno, et al. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573:582-585. https://doi.org/10.1038/s41586-019-1567-7.

Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada and C. W. Robledo. 2015. InfoStat versión 2015. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Díaz-Villanueva, V., and R. Albariño. 2021. Una aproximación al funcionamiento de los arroyos de montaña del norte de la Patagonia Andina. Ecología Austral 31(1):129-147. https://doi.org/10.25260/ea.21.31.1.0.1353.

Durance, I., M. W. Bruford, R. Chalmers, N. A. Chappell, M. Christie, B. J. Cosby, et al. 2016. The challenges of linking ecosystem services to biodiversity: lessons from a large-scale freshwater study. Advances in Ecological Research 54:87-134. https://doi.org/10.1016/bs.aecr.2015.10.003.

England, L. E., and A. D. Rosemond. 2004. Small reductions in forest cover weaken terrestrial‐aquatic linkages in headwater streams. Freshwater Biology 49(6):721-734. https://doi.org/10.1111/j.1365-2427.2004.01219.x.

Feller, M. C. 2005. Forest harvesting and streamwater inorganic chemistry in western north America: a review 1. JAWRA Journal of the American Water Resources Association 41(4):785-811. https://doi.org/10.1111/j.1752-1688.2005.tb03771.x.

García, V. J., and P-. Rodríguez. 2018. Efecto del castor en el metabolismo del perifiton y en variables limnológicas de ríos y arroyos fueguinos. Ecología Austral 28(3):593-605. https://doi.org/10.25260/ea.18.28.3.0.708.

Gomi, T., R. C. Sidle, and J. S. Richardson. 2002. Understanding processes and downstream linkages of headwater systems: headwaters differ from downstream reaches by their close coupling to hillslope processes, more temporal and spatial variation, and their need for different means of protection from land use. BioScience 52(10):905-916. https://doi.org/10.1641/0006-3568(2002)052[0905:upadlo]2.0.co;2.

Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel, and R. J. Nathan. 2004. Stream Hydrology: An introduction for ecologists. John Wiley and Sons.

Griffith, J. E., and P. M. Kiffney. 2022. Seasonal and temporal variation in the effects of forest thinning on headwater stream benthic organisms in coastal British Columbia. Forest Ecology and Management 504:119801. https://doi.org/10.1016/j.foreco.2021.119801.

Guevara, G., R. Godoy, P. Boeckx, C. Jara, and C. Oyarzún. 2009. Leaf litter dynamics in headwater streams of the Chilean Andes: influence of shredders and silvicultural activities. Frogs and Life Strategies: An approach to evaluate forest ecosystem health in southern, 41. https://doi.org/10.1016/j.ecohyd.2015.07.003.

Guevara, G., R. Godoy, and M. Franco. 2018. Linking riparian forest harvest to benthic macroinvertebrate communities in Andean headwater streams in southern Chile. Limnologica 68:105-114. https://doi.org/10.1016/j.limno.2017.07.007.

Hammer, Ø., D. A. Harper, and P. D. Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9.

Harrelson, C. C. 1994. Stream channel reference sites: an illustrated guide to field technique (Vol. 245). US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. https://doi.org/10.2737/rm-gtr-245.

Hillebrand, H. 2002. Top-down versus bottom-up control of autotrophic biomass—a meta-analysis on experiments with periphyton. Journal of the North American Benthological Society 21(3):349-369. https://doi.org/10.2307/1468475.

Kiffney, P. M., and J. S. Richardson. 2010. Organic matter inputs into headwater streams of southwestern British Columbia as a function of riparian reserves and time since harvesting. Forest Ecology and Management 260(11):1931-1942. https://doi.org/10.1016/j.foreco.2010.08.016.

Kreutzweiser, D., E. Muto, S. Holmes, and J. Gunn. 2010. Effects of upland clearcutting and riparian partial harvesting on leaf pack breakdown and aquatic invertebrates in boreal forest streams. Freshwater Biology 55(11):2238-2252. https://doi.org/10.1111/j.1365-2427.2010.02410.x.

Lakatos, G. 1989. Composition of reed periphyton (biotecton) in the Hungarian part of lake Fertö. Biol. Forschung. Für Burg. 71:125-134.

Lecerf, A., and J. S. Richardson. 2010. Litter decomposition can detect effects of high and moderate levels of forest disturbance on stream condition. Forest Ecology and Management 259(12):2433-2443. https://doi.org/10.1016/j.foreco.2010.03.022.

Lowe, R., and Y. Pan. 1996. Benthic algal communities as biological monitors. Pp. 705-739 en R. J. Stevenson, M. L. Bothwell and R. J. Lowe (eds.). Algal ecology. Freshwater Benthic Ecosystems. Academic press. San Diego, New York, Boston, Sydney, Tokio, Toronto. Pp. 753. https://doi.org/10.1016/B978-012668450-6/50051-5.

Marker, A. F. H., C. A. Crowther, and R. J. M. Gunn. 1980. Methanol and acetone as solvents for estimating chlorophyll a and phaeopigments by spectrophotometry. Ergebnisse der Limnologie 14:52-69.

Martin, C. W., J. W. Hornbeck, G. E. Likens, and D. C. Buso. 2000. Impacts of intensive harvesting on hydrology and nutrient dynamics of northern hardwood forests. Canadian Journal of Fisheries and Aquatic Sciences 57(Suppl. 2):19-29. https://doi.org/10.1139/f00-106.

Martínez-Pastur, G., M. V. Lencinas, J. M. Cellini, P. L. Peri, and R. S. Esteban. 2009. Timber management with variable retention in Nothofagus pumilio forests of Southern Patagonia. Forest Ecology and Management 258(4):436-443. https://doi.org/10.1016/j.foreco.2009.01.048.

Meyer, J. L., and J. B. Wallace. 2001. Lost linkages and lotic ecology: rediscovering small streams. En Ecology: achievement and challenge: the 41st Symposium of the British Ecological Society sponsored by the Ecological Society of America held at Orlando, Florida, USA, 10-13 April 2000 (pp. 295-317). Blackwell Science.

Miserendino, M. L., R. Casaux, M. Archangelsky, C. Y. Di Prinzio, C. Brand, and A. M. Kutschker. 2011. Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams. Science of the Total Environment 409(3):612-624. https://doi.org/10.1016/j.scitotenv.2010.10.034.

Mittermeier, R. A., C. G. Mittermeier, T. M. Brooks, J. D. Pilgrim, W. R. Konstant, G. A. da Fonseca, and C. Kormos. 2003. Wilderness and biodiversity conservation. Proceedings of the National Academy of Sciences 100(18):10309-10313. https://doi.org/10.1073/pnas.1732458100.

Mittermeier, R. A., W. R. Turner, F. W. Larsen, T. M. Brooks, and C. Gascon. 2011. Global biodiversity conservation: the critical role of hotspots. Pp. 3-22 en F. Zachos and J. Habel (eds.). Biodiversity hotspots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20992-5_1.

Moore, R. D., and S. M. Wondzell. 2005. Physical hydrology and the effects of forest harvesting in the Pacific Northwest: a review. Journal of the American Water Resources Association 41(4):763-784. https://doi.org/10.1111/j.1752-1688.2005.tb04463.x.

Moorman, M. C., C. B. Anderson, A. G. Gutiérrez, R. Charlin, and R. Rozzi. 2006. Watershed conservation and aquatic benthic macroinvertebrate diversity in the Alberto D’Agostini National Park, Tierra del Fuego, Chile. Pp. 41-58 en Anales Instituto Patagonia. Vol. 34. Universidad de Magallanes.

Pisano, E. 1977. Fitogeografía de Fuego–Patagonia Chilena. I. Comunidades vegetales entre las latitudes 52° y 56°S. Anales del Instituto de la Patagonia 8:121-250.

Pessacg, N., S. Flaherty, L. Brandizi, S. Solman, and M. Pascual. 2015. Getting water right: A case study in water yield modelling based on precipitation data. Science of the Total Environment 537:225-234. https://doi.org/10.1016/j.scitotenv.2015.07.148.

Petri, G., F. Borodowski, C. von Haeften, L. S. Funes, E. Barreiro, M. Peña, C. Moruzzi, J. Lavignolle, and J. P. Gómez de la Fuente. 2017. Censo Nacional de Aserraderos: Informe del relevamiento Censal en la provincia de Tierra del Fuego, Antártida e Islas del Atlántico Sur. Ministerio Agroindustria, Presidencia de la Nación.

Quinn, J. M., A. B. Cooper, R. J. Davies‐Colley, J. C. Rutherford, and R. B. Williamson. 1997. Land use effects on habitat, water quality, periphyton, and benthic invertebrates in Waikato, New Zealand, hill‐country streams. New Zealand Journal of Marine and Freshwater Research 31(5):579-597. https://doi.org/10.1080/00288330.1997.9516791.

Rabassa, J., A. Coronato, C. J. Heusser, F. R. Juñent, A. Borromei, C. Roig, and M. Quattrocchio. 2006. The peatlands of Argentine Tierra del Fuego as a source for paleoclimatic and paleoenvironmental information. Developments in Earth Surface Processes 9:129-144. https://doi.org/10.1016/s0928-2025(06)09006-7.

Richardson, J. S. 2008. Aquatic arthropods and forestry: effects of large-scale land use on aquatic systems in Nearctic temperate regions. The Canadian Entomologist 140(4):495-509. https://doi.org/10.4039/n07-ls04.

Richardson, J. S., and R. J. Danehy. 2007. A synthesis of the ecology of headwater streams and their riparian zones in temperate forests. Forest Science 53(2):131-147. https://doi.org/10.1093/forestscience/53.2.131.

Richardson, J. S., and T. Sato. 2015. Resource subsidy flows across freshwater–terrestrial boundaries and influence on processes linking adjacent ecosystems. Ecohydrology 8(3):406-415. https://doi.org/10.1002/eco.1488.

Rosemond, A. D., C. M. Pringle, A. Ramírez, M. J. Paul, and J. L. Meyer. 2002. Landscape variation in phosphorus concentration and effects on detritus‐based tropical streams. Limnology and Oceanography 47(1):278-289. https://doi.org/10.4319/lo.2002.47.1.0278.

Simanonok, M. P., C. B. Anderson, G. Martínez Pastur, M. V. Lencinas, and J. H. Kennedy. 2011. A comparison of impacts from silviculture practices and North American beaver invasion on stream benthic macroinvertebrate community structure and function in Nothofagus forests of Tierra del Fuego. Forest Ecology and Management 262(2):263-269. https://doi.org/10.1016/j.foreco.2011.03.031.

Sweeney, B. W., T. L. Bott, J. K. Jackson, L. A. Kaplan, J. D. Newbold, L. J. Standley, et al. 2004. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proceedings of the National Academy of Sciences 101(39):14132-14137. https://doi.org/10.1073/pnas.0405895101.

Valderrama, J. C. 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10(2):109-122. https://doi.org/10.1016/0304-4203(81)90027-x.

Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37(1):130-137. https://doi.org/10.1139/f80-017.

Villatarco Vázquez, A. P. 2017. Estructura y función de la comunidad de macroinvertebrados bentónicos de ríos de la provincia de Tierra del Fuego. Tesis Doctoral. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. URL: bit.ly/3YNAxis.

Wallace, J. B., J. R. Webster, S. L. Eggert, J. L. Meyer, and E. R. Siler. 2001. Large woody debris in a headwater stream: long‐term legacies of forest disturbance. International Review of Hydrobiology 86(4‐5):501-513. https://doi.org/10.1002/1522-2632(200107)86:4/5%3C501::aid-iroh501%3E3.0.co;2-8.

Walling, D. E., and D. Fang. 2003. Recent trends in the suspended sediment loads of the world's rivers. Global and Planetary Change 39(1-2):111-126. https://doi.org/10.1016/s0921-8181(03)00020-1.

Wilkerson, E., J. M. Hagan, and A. A. Whitman. 2010. The effectiveness of different buffer widths for protecting water quality and macroinvertebrate and periphyton assemblages of headwater streams in Maine, USA. Canadian Journal of Fisheries and Aquatic Sciences 67(1):177-190. https://doi.org/10.1139/f09-162.

Wolman, M. G. 1954. A method of sampling coarse river‐bed material. Eos, Transactions American Geophysical Union 35(6):951-956. https://doi.org/10.1029/tr035i006p00951.

Zhang, Y., J. S. Richardson, and X. Pinto. 2009. Catchment‐scale effects of forestry practices on benthic invertebrate communities in Pacific coastal streams. Journal of Applied Ecology 46(6):1292-1303. https://doi.org/10.1111/j.1365-2664.2009.01718.x.

Caracterización de arroyos en cuencas con y sin manejo forestal en Tierra del Fuego, Argentina

Descargas

Publicado

2024-09-01

Cómo citar

Lopez, M. E., Domínguez, E., & Anderson, C. B. (2024). Caracterización de arroyos en cuencas con y sin manejo forestal en Tierra del Fuego, Argentina. Ecología Austral, 435–447. https://doi.org/10.25260/EA.24.34.3.0.2395

Número

Sección

Artículos