Factores que afectan la riqueza de especies epífitas vasculares del arbolado de alineación en la Ciudad Autónoma de Buenos Aires

Autores/as

  • Alejandro Romero Zapiola Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica General. Buenos Aires, Argentina
  • Mariano Devoto Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica General. Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Buenos Aires, Argentina https://orcid.org/0000-0003-3098-236X

DOI:

https://doi.org/10.25260/EA.24.34.3.0.2406

Palabras clave:

red ecológica, ecología urbana, flora urbana, holoepífitas, Tillandsia, comensalismo, forófitas

Resumen

Las especies de plantas epífitas crecen sobre otras plantas, llamadas forófitas, y contribuyen de forma positiva a la biodiversidad. Este estudio analiza las interacciones entre plantas epífitas y leñosas en la Ciudad Autónoma de Buenos Aires. Se muestrearon 555 individuos de plantas leñosas, lo que permitió construir una red de 24 forófitas y 15 especies epífitas. El 60% de las epífitas fueron accidentales; el 13%, epífitas facultativas o hemiepífitas, y el 26%, holoepífitas. La red de interacciones forófita-epífita tuvo una estructura no anidada y valores medios de equitatividad y riqueza. Las forófitas de mayor tamaño, corteza rugosa y nativas de la Argentina presentaron mayor riqueza de especies epífitas. Estos hallazgos proporcionan información relevante para el manejo de la biodiversidad urbana, la gestión del arbolado urbano y estudios de calidad del aire.

Citas

Alex, A., U. D. Chima, and U. D: Ugbaja. 2021. Diversity and phorophyte preference of vascular epiphytic flora on avenues within the University of Port Harcourt, Nigeria. J For Environ Sci 37:217-225. https://doi.org/10.7747/jfes.2021.37.3.217.

Almeida-Neto, M., P. Guimarães Jr, R. D. Loyola, and W. Ulrich. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227-1239. https://doi.org/10.1111/j.0030-1299.2008.16644.x.

Alvarez Arnesi, E., I. M. Barberis, and J. L. Vesprini. 2018. Distribución de epífitas vasculares sobre cuatro especies arbóreas en un bosque xerofítico del Chaco Húmedo, Argentina. Ecología Austral 28:480-495. https://doi.org/10.25260/ea.18.28.3.0.694.

Alvim, F. S., S. G. Furtado, and L. Menini Neto. 2020. Diversity of vascular epiphytes in urban green areas of Juiz de Fora, Minas Gerais, Brazil. Floresta E Ambiente 27: e20190116. https://doi.org/10.1590/2179-8087.011619.

Bartoli, C. G., J. Beltrano, L. V. Fernández, and D. O. Caldiz. 1993. Control of the epiphytic weeds Tillandsia recurvata and Tillandsia aëranthos with different herbicides. For Ecol Manag 59:289-294. https://doi.org/10.1016/j.flora.2014.08.007.

Becker, D. F. P., R. Linden, and J. L. Schmitt. 2017. Richness, coverage, and concentration of heavy metals in vascular epiphytes along an urbanization gradient. Sci Total Environ 584-585:48-54. https://doi.org/10.1016/j.scitotenv.2017.01.092.

Benito, G., and M. Palermo Arce. 2021. El árbol en la ciudad. Editorial Facultad de Agronomía.

Benzing, D. H., and J. Seemann. 1978. Nutritional piracy and host decline: a new perspective on the epiphyte-host relationship. Selbyana 2:133-148.

Bernal, R., T. Valverde, and L. Hernández-Rosas. 2005. Habitat preference of the epiphyte Tillandsia recurvata (Bromeliaceae) in a semi-desert environment in Central Mexico. Can J Bot 83:1238-1247. https://doi.org/10.1139/b05-076.

Berthon, K., F. Thomas, and S. Bekessy. 2021. The role of ‘nativeness’ in urban greening to support animal biodiversity. Landsc Urban Plan 205:103-959. https://doi.org/10.1016/j.landurbplan.2020.103959.

Bhatta, A., S. Gairolab, Y. Govenderc, H. Baijnatha, and S. Ramdhania. 2015. Epiphyte diversity on host trees in an urban environment, eThekwini Municipal Area, South Africa. N Z J Bot 53:24-37. https://doi.org/10.1080/0028825x.2014.1000935.

Caldiz, D., and J. Beltrano. 1989. Control of the epiphytic weeds Tillandsia recurvata and T. aëranthos with simazine. For Ecol Manag 28:153-159. https://doi.org/10.1016/0378-1127(89)90067-4.

Callaway, R. M., K. O. Reinhart, G. W. Moore, D. J. Moore, and S. C. Pennings. 2002. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132:221-230. https://doi.org/10.1007/s00442-002-0943-3.

Ceballos, S. J., N. P. Chacoff, and A. Malizia. 2016. Interaction network of vascular epiphytes and trees in a subtropical forest. Acta Oecologica 77:152-159. https://doi.org/10.1016/j.actao.2016.10.007.

Cellini, J. M., L. Salomón, and S. Bonadío. 2012. Tillandsia myosura Griseb. Ex Baker (Bromeliaceae) una nueva cita para la flora de la provincia de Buenos Aires, Argentina. Bonplandia 21:183-188. https://doi.org/10.30972/bon.2121306.

Claver, F., J. Alaniz, and D. Caldíz. 1983. Tillandsia spp.: Epiphytic weeds of trees and bushes. For Ecol Manag 6:367-372. https://doi.org/10.1016/0378-1127(83)90044-0.

Colwell, R. K. 2013. Estimates: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and Application. URL: purl.oclc.org/estimates.

Cortés-Anzúres, B. O., A. M. Corona-López, A. Damon, M. Mata-Rosas, and A. Flores-Palacios. 2020. Phorophyte type determines epiphyte-phorophyte network structure in a Mexican oak forest. Flora 272:151704. https://doi.org/10.1016/j.flora.2020.151704.

De Marzi, V. 2006. 100 Plantas argentinas (1a ed.). Albatros.

Díaz, A., K. E. Sieving, M. Peña-Foxon, and J. J. Armesto. 2012. A field experiment links forest structure and biodiversity: epiphytes enhance canopy invertebrates in Chilean forests. Ecosphere 3:1-17. https://doi.org/10.1890/es11-00168.1.

Dosil Hiriart, F. D., M. J. Apodaca, P. A. Cabanillas, M. Benedictto, L. Barral, and E. L. Guerrero. 2018. Listado comentado de las plantas vasculares trepadoras y epífitas de la costa rioplatense del Partido de Quilmes (Buenos Aires, Argentina). Bol Soc Argent Bot 53:103-113. https://doi.org/10.31055/1851.2372.v53.n1.19911.

Doumecq, M. B., P. M. Arenas, and J. A. Hurrell. 2020. Etnobotánica de las especies combustibles comercializadas en la Ribera Platense, Buenos Aires, Argentina. Ethnobot Res Appl 19:1-27. https://doi.org/10.32859/era.19.03.1-27.

Dwyer, J. F., G. McPherson, H. W. Schroeder, and R. A. Rowntree. 1992. Assessing the benefits and costs of the urban forest. J Arboric 18:227-234. https://doi.org/10.48044/jauf.1992.045.

Einzmann, H. J. R., J. Beyschlag, F. Hofhansl, W. Wanek, and G. Zotz. 2015. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level. AoB Plants 7:plu073. https://doi.org/10.1093/aobpla/plu073.

Elias, J. P. C., S. R. Mortara, A. F. Nunes-Freitas, E. van de Berg, and F. N. Ramos. 2021. Host tree traits in pasture areas affect forest and pasture specialist epiphyte species differently. Am J Bot 108:598-606. https://doi.org/10.1002/ajb2.1634.

Flores-Palacios, A., and J. García-Franco. 2001. Sampling Methods for Vascular Epiphytes: Their Effectiveness in Recording Species Richness and Frequency. Selbyana 22:181-191.

Flores-Palacios, A., and J. G. García-Franco. 2006. The relationship between tree size and epiphyte species richness: testing four different hypotheses. J Biogeogr 33:323-330. https://doi.org/10.1111/j.1365-2699.2005.01382.x.

Francisco, T. M., D. R. Couto, D. M. Evans, M. L. Garbin, and C. R. Ruiz‐Miranda. 2018. Structure and robustness of an epiphyte–phorophyte commensalistic network in a neotropical inselberg. Austral Ecology 43:903-914. https://doi.org/10.1111/aec.12637.

Giampaoli, P., E. Wannaz, A. R. Tavares, and M. Domingos. 2016. Suitability of Tillandsia usneoides and Aechmea fasciata for biomonitoring toxic elements under tropical seasonal climate. Chemosphere 149:14-23. https://doi.org/10.1016/j.chemosphere.2016.01.080.

González, M. V., and S. J. Ceballos. 2021. Las epífitas vasculares en un ambiente urbano están influidas por características del arbolado, el clima y las fuentes de propágulos. Ecol Austral 31:357-371. https://doi.org/10.25260/ea.21.31.2.0.1354.

Graciano, C., L. V. Fernández, and D. O. Caldiz. 2003. Tillandsia recurvata L. as a bioindicator of sulfur atmospheric pollution. Ecol Austral 13:3-14. URL: tinyurl.com/5n89uz53.

Guerrero, E. L., and F. L. Agnolin. 2016. Recent changes in plant and animal distribution in the southern extreme of the Paranaense biogeographical province (northeastern Buenos Aires province, Argentina): Ecological responses to climate change? Rev Mus Argent Cienc Nat 18:9-30. https://doi.org/10.22179/revmacn.18.428.

Guerrero, E. L., and J. M. Cellini. 2017. Corrimiento del límite austral en tres especies de Pleopeltis (Polypodiaceae) y su posible relación con el cambio climático en Buenos Aires, Argentina. Cuad Investig UNED 9:51-58. https://doi.org/10.22458/urj.v9i1.1678.

Hoeber, V., and G. Zotz. 2022. Accidental epiphytes: ecological insights and evolutionary implications. Ecol Monogr 92:e1527. https://doi.org/10.1002/ecm.1527.

Hu, H.-X., T. Shen, D. -L. Quan, A. Nakamura, and L. Song. 2021. Structuring interaction networks between epiphytic bryophytes and their hosts in Yunnan, SW China. Front For Glob Change 4:716278. https://doi.org/10.3389/ffgc.2021.716278.

Hurrell, J. A., D. H. Bazzano, and G. Delucchi. 2005. Biota Rioplatense X - Monocotiledóneas herbáceas nativas y exóticas. Ed. LOLA (Literature of Latin America). URL: lola-online.com.

Ings, T. C., J. M. Montoya, J. Bascompte, and N. Blüthgen. 2009. Ecological networks - beyond food webs. J Anim Ecol 78:253-269. https://doi.org/10.1111/j.1365-2656.2008.01460.x.

Jiménez-Valverde, A., and J. Hortal. 2003. Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Rev Ibér Aracnol 8:151-161.

Lahitte, H. B., J. A. Hurrell, J. J. Valla, L. Jankowski, D. Bazzano, and A. J. Hernández. 1999. Biota Rioplatense IV - Árboles Urbanos. Ed. LOLA (Literature of Latin America). URL: lola-online.com.

Lahitte, H. B., J. A. Hurrell, J. J. Valla, A. Saénz, S. Rivera, L. Jankowski, and D. Bazzano. 2001. Biota Rioplatense VI - Árboles Urbanos 2. Ed. LOLA (Literature of Latin America). URL: lola-online.com.

Lallana, V. H., C. E. Billard, V. A. Martínez, L. F. García, M. V. Barsanti, J. F. Di Persia, C. Dalzotto, K. M. Scimpft, and V. De La Cruz. 2016. Conservación de orquídeas nativas de Entre Ríos utilizando técnicas de cultivo de tejidos “in vitro”. Cienc Doc Tecnol Supl 6:94-121.

López-Villalobos, A., A. Flores-Palacios, and R. Ortiz-Pulido. 2008. The relationship between bark peeling rate and the distribution and mortality of two epiphyte species. Plant Ecol 198:265-274. https://doi.org/10.1007/s11258-008-9402-5.

Luna-Cozar, J., O. Martínez-Madera, and R. Jones. 2020. Ball Moss Tillandsia recurvata L. as a refuge for arthropods in a seasonally dry tropical forest of central Mexico. Southwest Entomol 45:445-460. https://doi.org/10.3958/059.045.0213.

Malm, O., M. de Freitas Fonseca, P. Hissnauer Miguel, W. Rodrigues Bastos, and F. Neves Pinto. 1998. Use of epiphyte plants as biomonitors to map atmospheric mercury in a gold trade center city, Amazon, Brazil. Sci Total Environ 213:57-64. https://doi.org/10.1016/s0048-9697(98)00074-6.

Martins, P. L. S. S., S. G. Furtado, and L. Menini Neto. 2020. Could epiphytes be xenophobic? Evaluating the use of native versus exotic phorophytes by the vascular epiphytic community in an urban environment. Community Ecol 21:91-101. https://doi.org/10.1007/s42974-020-00001-y.

Matthews, T. J., H. E. W. Cottee-Jones, and R. J. Whittaker. 2015. Quantifying and interpreting nestedness in habitat islands: a synthetic analysis of multiple datasets. Divers Distrib 21:392-404. https://doi.org/10.1111/ddi.12298.

Mehltreter, K., A. Flores-Palacios, and J. G. García-Franco. 2005. Host preferences of low-trunk vascular epiphytes in a cloud forest of Veracruz, Mexico. J Trop Ecol 21:651-660. https://doi.org/10.1017/s0266467405002683.

Mejía-Echeverry, D., M. A. E. Chaparro, J. F. Duque-Trujillo, M. A. E. Chaparro, and C. Miranda. 2018. Magnetic biomonitoring as a tool for assessment of air pollution patterns in a tropical valley using Tillandsia sp. Atmosphere 9:283. https://doi.org/10.3390/atmos9070283.

Naranjo, C., J. M. Iriondo, M. L. Riofrio, and C. Lara-Romero. 2019. Evaluating the structure of commensalistic epiphyte–phorophyte networks: A comparative perspective of biotic interactions. AoB Plants 11:plz011. https://doi.org/10.1093/aobpla/plz011.

Niederl, J., J. Prosperi, and G. Michaloud. 2001. Epiphytes and their contribution to canopy diversity. Plant Ecol 153:51-63. https://doi.org/10.1023/a:1017517119305.

Panagiotis T. 2022. The effects of urbanisation on ecological interactions. Curr Opin Insect Sci 52:100922. https://doi.org/10.1016/j.cois.2022.100922.

Patefield, W. M. 1981. Algorithm AS 159: an efficient method of generating random r × c tables with given row and column totals. J R Stat Soc Ser C Appl Stat 30:91-97. https://doi.org/10.2307/2346669.

Pellegrini, E., G. Lorenzini, S. Loppi, and C. Nali. 2014. Evaluation of the suitability of Tillandsia usneoides (L.) L. as biomonitor of airborne elements in an urban area of Italy, Mediterranean basin. Atmos Pollut Res 5:226-235. https://doi.org/10.5094/apr.2014.028.

Pérez-Noyola, F. J., J. Flores, L. Yáñez-Espinosa, E. Jurado, C. González-Salvatierra, and E. Badano. 2020. Is ball moss (Tillandsia recurvata) a structural parasite of mesquite (Prosopis laevigata)? Anatomical and ecophysiological evidence. Trees 35:135-144. https://doi.org/10.1007/s00468-020-02023-5.

Piazzon, M., A. R. Larrinaga, and L. Santamaría. 2011. Are nested networks more robust to disturbance? A test using epiphyte-tree commensalistic networks. PLoS One 6:e19637. https://doi.org/10.1371/journal.pone.0019637.

Pla, L. 2006. Biodiversidad: Inferencia basada en el índice de Shannon y la riqueza. Interciencia 31:583-590.

R Core Team. 2023. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

Rahimi, E., S. Barghjelveh, and P. Dong. 2022. A review of diversity of bees, the attractiveness of host plants and the effects of landscape variables on bees in urban gardens. Agriculture and Food Security 11:6. https://doi.org/10.1186/s40066-021-00353-2.

Rodriguez-Gironés, M. A., and L. Santamaría. 2006. A new algorithm to calculate the nestedness temperature of presence–absence matrices. J Biogeogr 33:924-935. https://doi.org/10.1111/j.1365-2699.2006.01444.x.

Sábato, J. 2012. El Libro Verde / 2. Corredores ambientales y calidad de vida (1ra ed. Vol. 2). Subsecr Proy Urbanismo Arquit Infraestr.

Servicio Meteorológico Nacional. 2010. Estadísticas climáticas de largo plazo 1981-2010. Serv Meteorol Nac, Argentina.

Servicio Meteorológico Nacional. 2017a. El mes de enero en la Ciudad de Buenos Aires. Caract Climatol Ciudad de Buenos Aires.

Servicio Meteorológico Nacional. 2017b. El mes de julio en la Ciudad de Buenos Aires. Caract Climatol Ciudad de Buenos Aires.

Shacklette, H. T., and J. J. Connor. 1973. Airborne chemical elements in Spanish Moss. Statistical Studies in Field Geochemistry. USGS Prof. Pap. 574-E. https://doi.org/10.3133/pp574e.

Shannon, C. E. 1948. A mathematical theory of communication. Bell Syst Tech J 27:379-423. https://doi.org/10.7551/mitpress/12274.003.0014.

Spicer, M. E., and C. L. Woods. 2022. A case for studying biotic interactions in epiphyte ecology and evolution. Perspect Plant Ecol Evol Syst 54:125658. https://doi.org/10.1016/j.ppees.2022.125658.

Taylor, A., A. Saldaña, G. Zotz, C. Kirby, I. Díaz, and K. Burns. 2016. Composition patterns and network structure of epiphyte-host interactions in Chilean and New Zealand temperate forests. N Z J Bot 54:1-19. https://doi.org/10.1080/0028825x.2016.1147471.

Valencia-Díaz, S., A. Flores-Palacios, V. Rodríguez-López, E. Ventura-Zapata, and A. R. Jiménez-Aparicio. 2010. Effect of host-bark extracts on seed germination in Tillandsia recurvata, an epiphytic bromeliad. J Trop Ecol 26:571-581. https://doi.org/10.1017/s0266467410000374.

Vergara-Torres, C. A., S. Valencia-Díaz, J. G. García-Franco, and A. Flores-Palacios. 2024. Do epiphytes affect the fitness of their phorophytes? The case of Tillandsia recurvata on Bursera copallifera. J Trop Ecol 40:e13. https://doi.org/10.1017/S0266467424000117.

Vuong, Q. H. 1989. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57:307-333. https://doi.org/10.2307/1912557.

Wagner, K., G. Mendieta-Leiva, and G. Zotz. 2015. Host specificity in vascular epiphytes: a review of methodology, empirical evidence, and potential mechanisms. AoB Plants 7:plu092. https://doi.org/10.1093/aobpla/plu092.

World Health Organization. 2005. Ecosystems and human well-being: health synthesis. A Report of the Millennium Ecosystem Assessment.

Wyse, S. V., and B. R. Burns. 2011. Do host bark traits influence trunk epiphyte communities? N Z J Ecol 35:296-301.

Zotz, G. 2005. Vascular epiphytes in the temperate zones – a review. Plant Ecol 176:173-183. https://doi.org/10.1007/s11258-004-0066-5.

Zotz, G. 2013. The systematic distribution of vascular epiphytes – a critical update. Bot J Linn Soc 171:353-481. https://doi.org/10.1111/boj.12010.

Zotz, G. 2013. ‘Hemiepiphyte’: a confusing term and its history. Ann Bot 111:1015-1020. https://doi.org/10.1093/aob/mct085.

Factores que afectan la riqueza de especies epífitas vasculares del arbolado de alineación en la Ciudad Autónoma de Buenos Aires

Descargas

Archivos adicionales

Publicado

2024-11-25

Cómo citar

Romero Zapiola, A., & Devoto, M. (2024). Factores que afectan la riqueza de especies epífitas vasculares del arbolado de alineación en la Ciudad Autónoma de Buenos Aires. Ecología Austral, 34(3), 579–592. https://doi.org/10.25260/EA.24.34.3.0.2406