Descomposición y calidad físico-química foliar de 24 especies dominantes de los pastizales de altura de las sierras de Córdoba, Argentina

Autores/as

  • María Poca Facultad de Agronomía. Universidad de Buenos Aires
  • Natalia Pérez Harguindeguy
  • María V. Vaieretti
  • Ana M. Cingolani

DOI:

https://doi.org/10.25260/EA.14.24.2.0.28

Resumen

Tanto la calidad química de la broza como las características físicas de las hojas verdes han sido indicadas como determinantes de la descomposición de la broza. El objetivo de este trabajo fue analizar la relación entre la descomposición, la calidad química de la broza y la calidad física de las hojas verdes de 24 especies dominantes de pastizales mésicos y húmedos de las sierras altas de Córdoba (Argentina). Además, comparamos el patrón de asociación entre esas características con el descripto para las especies de las sierras bajas de la misma región. Medimos la descomposición de la broza mediante la incubación en jardín común en dos periodos (70 y 196 días). Como indicadores de la calidad química de la broza medimos el contenido de componentes lábiles (nitrógeno) y el de componentes recalcitrantes (celulosa, hemicelulosa y lignina). A partir de estos indicadores calculamos la proporción holocelulosa/fibras y las relaciones lignina:nitrógeno, holocelulosa:nitrógeno y fibras:nitrógeno. Como indicador de calidad física de las hojas verdes medimos el área foliar específica. La descomposición aumentó a medida que disminuyó la relación fibras:nitrógeno para ambos periodos. Al contrario de lo encontrado en otros trabajos, el contenido de lignina y el área foliar específica no se correlacionaron significativamente con la descomposición. En cambio, las relaciones entre descomposición y calidad resultaron similares a las documentadas para las especies dominantes de las sierras bajas de Córdoba. Esta similitud, a pesar de las diferencias en composición de especies, tipos funcionales y regímenes climáticos, indica una consistencia del control químico en la descomposición.

 

ABSTRACT

Litters’ chemical and green leaves’ physical quality have been indicated as determinants of litter decomposition. The objective of this work was to analyze the relationship between litter decomposition and chemical quality and green leaves physical quality of 24 dominant species of mesic and humid highland grasslands, Córdoba, Argentina. In addition, we compared the pattern of association between these variables with that described for the lowland mountains of the same region. We measured litter decomposition through a common garden experiment with two retrieval dates (70 and 196 days). We measured labile compounds (nitrogen) and recalcitrant compounds (cellulose, hemicelluloses and lignin) as litter chemical quality indicators. Besides, we calculated from these indicators the holocellulose/fiber proportion and the lignin:nitrogen, holocellulose:nitrogen and fiber:nitrogen ratios. We measured the specific leaf area as a physical quality indicator of the green leaves. The decomposition increased mainly while the fiber:nitrogen ratio decreased for both retrieval dates. Contrary to other works, the lignin content and the specific leaf area were not significantly associated to the decomposition. The relationships that we found in this work between decomposition and quality parameters are similar to the ones described by Vaieretti et al. (2005) for the species of the lowland mountains of Córdoba. This similitude, in spite of the differences in species composition, functional types and environmental variables, indicate a consistent chemical control over decomposition.

Citas

AERTS, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystem: a triangular relationship. Oikos, 79:439-449.

BERG, B. 1986. Nutrient release from litter and humus in coniferous forest soils-a mini review. Scand. J. For. Res., 1:359-369.

BERG, B; G EKBOHM & C MCCLAUGHERTY. 1984. Lignin and holocellulose relations during long-term decomposition of some forest litter. Long-term decomposition in a Scots pine forest IV. Can. J. Bot., 62:2540-2550.

BERG, B. 1986. Nutrient release from litter and humus in coniferous forest soils-a mini review. Scand. J. For. Res., 1:359-369.

BERG, B & R LASKOWSKI. 2006. Methods in studies of organic matter decay. Pp. 292-314 en: Litter decomposition: A guide to carbon and nutrient turnover. Academic Press. Elsevier.

CABIDO, M & A ACOSTA. 1985. Estudio fitosociológico en bosques de Polylepis australis BITT. (“Tabaquillo”) en las Sierras de Córdoba, Argentina. Doc. Phytosoc., 9:385-400.

CABIDO, M; R BREIMER & G VEGA. 1987. Plant communities and associated soil types in a high plateau of the Córdoba mountains, central Argentina. Mt. Res. Dev., 7:25-42.

CADISH, G & KE GILLER. 1997. Driven by nature: a sense of arrival or departure? Capítulo 29. Pp. 393-399 en: Cadish, G & KE Giller (eds.). Driven by Nature: plant litter quality and decomposition. CAB International.

CHAPIN, FS III; PA MATSON & HA MOONLEY. 2002. Terrestrial decomposition. Capítulo 7. Pp.151-175 en: Principles of terrestrial ecosystem ecology. Springer-Verlag, New York, New York, USA.

CINGOLANI, AM; M CABIDO; D RENISON & V SOLÍS NEFFA. 2003. Combined effects of environment and grazing on vegetation structure in Argentine granite grasslands. J. Veg. Sci.,14:223-232.

CINGOLANI, AM; D RENISON; M ZAK & M CABIDO 2004. Mapping vegetation in a heterogeneous mountain using Landsat data: an alternative method to define and classify land-cover units. Rem. Sens. Env., 92:84-97.

CINGOLANI, AM; M CABIDO; DE GURVICH; D RENISON & S DÍAZ. 2007. Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits? J. Veg. Sci., 18:911-920.

CINGOLANI, AM; D RENISON; PA TECCO; D GURVICH & M CABIDO. 2008. Predicting cover types in a mountain range with long evolutionary grazing history: a GIS approach. J. Biogeogr., 35:538-551.

COLLADON, L; GS FELICI & I PAZOS. 2010. Anuario Pluviométrico 2005/6-2009/10. Cuenca del Río San Antonio. Sistema del Río Suquia-Provincia de Córdoba. Instituto Nacional del agua y del ambiente (INA) y centro de investigaciones de la Región Semiárida (CIRSA).

CORNELISSEN, JHC. 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol., 84:573-582.

CORNELISSEN, JHC & K THOMPSON. 1997. Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol., 135:109-114.

CORNELISSEN, JHC; N PÈREZ-HARGUINDEGUY; S DIAZ; P GRIME B MARZANO; ET AL. 1999. Leaf structure and defense control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol., 143:191-200.

CORNWELL, WK; JHC CORNELISSEN; K AMATANGELO; E DORREPAAL; VT EVINER; ET AL. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett., 11:1065-1071.

CORTEZ, J; M DEMARD; P BOTTNER & L JOCTEUR MONROZIER. 1996. Decomposition of Mediterranean leaf litters: A microcosm experiment investigating relationships between decomposition rates and litter quality. Soil Biol. Biochem., 28:443-452.

CORTEZ, J; E GARNIER; N PÉREZ HARGUINDEGUY; M DEBUSSCHE & D GILLON. 2007. Plant traits, litter quality and decomposition in a Mediterranean old-field succesion. Plant Soil, 296:19-34.

DÍAZ, S; A ACOSTA & M CABIDO. 1994. Community structure in montane grasslands of central Argentina in relation to land use. J. Veg. Sci., 5:483-488.

DÍAZ, S; JG HODGSON; K THOMPSON; M CABIDO; JHC CORNELISSEN; ET AL. 2004. The plant traits that drive ecosystems: Evidence from three continents. J. Veg. Sci., 15:295-304.

DI RIENZO, JA; F CASANOVES; MG BALZARINI; L GONZÁLEZ; M TABLADA; ET AL. InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar.

GARNIER, E; J CORTEZ; G BILLÈS; ML NAVAS; C ROUMET; ET AL. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85:2630-2637.

GOERING, HK & PJ VAN SOEST. 1970. Forage Fiber Analyses. Handbook N° 379, Department of Agriculture, USDA, Washington D.C.

KAZAKOU, E; C VIOLLE; C ROUMET; C PINTOR; O GIMENEZ; ET AL. 2009. Litter quality and decomposability of species from a Mediterranean succession depend on leaf traits but not on nitrogen supply. Ann. Bot., 104:1151-1161.

LAVELLE, P; E BLANCHART; S MARTIN; AV SPAIN; F TOUTAIN; ET AL. 1993. A hierarchical model for decomposition in terrestrial ecosystems: applications to soils of the humid tropics. Biotropica, 25:130-150.

LORANGER, G; DI PONCE & P LAVELLE. 2002. Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality. Biol. Fertile Soils, 35:247-252.

MELILLO, JM; JD ABER & JF MURATORE. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63:621-626.

MEENTEMEYER, V. 1978 Macroclimate and lignin control of litter decomposition rates. Ecology, 59:465-472.

O’NEILL, J & R WEBB. 1970. Simultaneous determination of nitrogen, phosphorus and potassium in plant material by automatic methods. J. Sci. Food Agr., 21:217-219.

PALM, CA & AP ROWLAND. 1997. A minimum dataset for characterization of plant quality for decomposition. Pp. 379-392 en: Cadisch, G & KE Giller (eds.). Driven by Nature: Plant Litter Quality and Decomposition. CAB International-University Press, Cambridge.

PAKEMAN, RJ & HM QUESTED. 2007. Sampling plant functional traits: What proportion of the species need to be measured? Appl. Veg. Sci., 10:91-96.

PÉREZ HARGUINDEGUY, N; S DÍAZ; JHC CORNELISSEN; F VENDRAMINI; M CABIDO; ET AL. 2000a. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil, 218:21-30.

PÉREZ HARGUINDEGUY, N; F VENDRAMINI; S DÍAZ; M CABIDO; JHC CORNELISSEN; ET AL. 2000b. Descomposición y caracteres foliares de especies de Pteridófitas y Angiospermas del Chaco Serrano de Córdoba, Argentina. Kurtziana, 28:35-44.

PÉREZ HARGUINDEGUY, N; S DÍAZ; E GARNIER; S LAVOREL; H POORTER; ET AL. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot., 61:167-234.

PUCHETA, E; F VENDRAMINI; M CABIDO & S DÍAZ. 1998a. Estructura y funcionamiento de un pastizal de montaña bajo pastoreo y su respuesta luego de su exclusión. Rev. Fac. Agr., 103(1):77-92.

PUCHETA, E; M CABIDO; S DÍAZ & G FUNES. 1998b. Floristic composition, biomass and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina. Acta Oecol., 19:97-105.

REICH, PB; IJ WRIGHT; J CAVENDER‐BARES; JM CRAINE; J OLEKSYN; ET AL. 2003. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci., 164:S143-S164.

SANTIAGO, LS & SJ WRIGHT. 2007. Leaf functional traits of tropical forest plants in relation to growth form. Funct. Ecol., 21:19-27.

SWIFT, MJ; OW HEAL & JM ANDERSON, JM. 1979. Decomposition in terrestrial ecosystems. Studies in Ecology. Blackwell, Oxford, UK.

TAYLOR, BR; D PARKINSON & WFJ PARSONS. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70:97-104.

VAIERETTI, MV; N PÉREZ HARGUINDEGUY; D GURVICH; AM CINGOLANI & M CABIDO. 2005. Descomposition dynamis and physico-chemical leaf quality of abundant species in a montane woodland in central Argentina. Plant Soil, 278:223-234.

VAIERETTI, MV; AM CINGOLANI; N PEREZ-HARGUINDEGUY; DE GURVICH & M CABIDO. 2010. Does decomposition of standard materials differ among grassland patches maintained by livestock? Austral Ecol., 35:935-943.

VAIERETTI, MV; AM CINGOLANI; N PEREZ HARGUINDEGUY & M CABIDO. 2013. Effects of differential grazing on decomposition rate and nitrogen availability in a productive mountain grassland. Plant Soil. DOI: 10.1007/s11104-013-1831-9.

VIVANCO, L & AT AUSTIN. 2006. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia, 150:97-107.

WESTOBY, M; DS FALSTER; AT MOLES; PA VESK & IJ WRIGHT. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst., 33:125-159.

WILSON, PJ; K THOMPSON & JG HODGSON. 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol., 143:155-162.

ZHANG, D; D HUI; Y LUO & G ZHOU. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J. Plant Ecol., 1(2):85-93.

ZULOAGA, FO; O MORRONE & MJ BELGRANO. 2008. Catálogo de las Plantas Vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). Monogr. Missouri Bot. Garden (USA).

Descargas

Publicado

2014-08-01

Cómo citar

Poca, M., Pérez Harguindeguy, N., Vaieretti, M. V., & Cingolani, A. M. (2014). Descomposición y calidad físico-química foliar de 24 especies dominantes de los pastizales de altura de las sierras de Córdoba, Argentina. Ecología Austral, 24(2), 249–257. https://doi.org/10.25260/EA.14.24.2.0.28