Composición funcional de invertebrados en los detritos de macrófitas sumergidas: efectos del hábitat y del tiempo de degradación

Autores/as

  • Edélti Faria Albertoni Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brasil. Laboratório de Limnologia, Instituto de Ciências Biológicas - ICB, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brasil.
  • Luiz Ubiratan Hepp Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brasil. Programa de Pós-Graduação em Ecologia, Universidade Regional Integrada do Alto Uruguai e das Missões, Campus de Erechim, Erechim, RS, Brasil.
  • Cristiane Carvalho Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brasil.
  • Cleber Palma-Silva Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brasil. Laboratório de Limnologia, Instituto de Ciências Biológicas - ICB, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brasil.

DOI:

https://doi.org/10.25260/EA.18.28.1.0.462

Resumen

El objetivo de este estudio fue determinar si el tiempo de degradación y el hábitat provisto por dos macrófitas sumergidas afectan la estructura de la comunidad de invertebrados en un lago somero subtropical. Se evaluó la descomposición de detrito en 60 bolsas. Los detritos fueron asignados al azar a cuatro tratamientos: Potamogeton pectinatus en descomposición dentro de su propio stand (PP) y en el interior de un stand de Chara zeylanica (PC), y C. zeylanica dentro de su propio stand (CC) y en el interior de un stand de P. pectinatus (CP). Durante el experimento de degradación (20 días) se evaluó la fauna asociada tanto a los detritos como a las macrófitas vivas. Las bolsas de detrito se lavaron, se secaron y luego se determinó el coeficiente de degradación. Estimamos la riqueza y la abundancia de los taxa de invertebrados asociados y evaluamos la preferencia de las comunidades de invertebrados comparando la fauna de las macrófitas vivas y de sus detritos. Los invertebrados asociados se clasificaron en grupos funcionales de alimentación. Chara zeylanica mostró una pérdida de peso cuatro veces más rápida que P. pectinatus. La mayor abundancia de invertebrados se produjo en el tratamiento PP y la mayor riqueza de invertebrados en los tratamientos de CC y PP. Los colectores y depredadores presentaron las mayores abundancias. El tratamiento PP tuvo el mayor número de colectores y PC una distribución más equitativa de los grupos funcionales. Cinco taxones mostraron preferencia por detritos de P. pectinatus en lugar de C. zeylanica o P. pectinatus vivos, y los detritos de la carófita fueron preferidos por seis taxones dentro de las plantas vivas, y por dos taxones cuando se incubaron en el interior del stand de P. pectinatus. Nuestro estudio demostró el efecto del sitio de incubación en el coeficiente de descomposición y en la estructura de las comunidades de invertebrados, y reveló que la abundancia de invertebrados en detritus se debe principalmente a su abundancia en las plantas vivas. Además, la ausencia de trituradores sugiere el uso de detritos principalmente como refugio en lugar de como recurso alimentario.

https://doi.org/10.25260/EA.18.28.1.0.462

Biografía del autor/a

Edélti Faria Albertoni, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brasil. Laboratório de Limnologia, Instituto de Ciências Biológicas - ICB, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brasil.

Instituto de Ciências Biológicas, Laboratório de Limnologia.

Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais - PPG-BAC

Luiz Ubiratan Hepp, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brasil. Programa de Pós-Graduação em Ecologia, Universidade Regional Integrada do Alto Uruguai e das Missões, Campus de Erechim, Erechim, RS, Brasil.

Programa de pós-graduação em Ecologia.

Laboratório de Biomonitoramento

Cristiane Carvalho, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brasil.

Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais - PPG-BAC

Cleber Palma-Silva, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brasil. Laboratório de Limnologia, Instituto de Ciências Biológicas - ICB, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brasil.

Instituto de Ciências Biológicas, Laboratório de Limnologia.

Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais - PPG-BAC

Citas

Albertoni, E. F., L. J. Prellvitz, and C. Palma-Silva. 2007. Macroinvertebrate fauna associated with Pistia stratiotes and Nymphoides indica in subtropical lakes (south Brazil). Brazilian Journal of Biology 67:499-507.

Albertoni, E. F., C. Palma-Silva, C. R. T. Trindade, and L. M. Furlanetto. 2014. Field evidence of the influence of aquatic macrophytes on water quality in a shallow eutrophic lake over a 13-year period. Acta Limnologica Brasiliensia 26(2):176-185

Ali, M. M., A. A. Mageed, and M. Heikal. 2007. Importance of aquatic macrophyte for invertebrate diversity in large subtropical reservoir. Limnologica 37:155-169.

Asaeda, T., V. K. Trung, and J. Manatunge. 2000. Modelling the effects of macrophytes growth and decomposition on the nutrient budget in shallow lakes. Aquatic Botany 68:217-237.

Baptista, D. F., D. F. Buss, L. F. M. Dorvillé, and J. L. Nessimian. 2001. Diversity and habitat preference of aquatic insects along the longitudinal gradient of the Macaé river basin, Rio de Janeiro, Brazil. Revista Brasileira de Biologia 61(2):249-258.

Bärlocher, F. 2005. Leaching. Pp. 329 in M. A. S. Graça, F. Bärlocher and M. O. Gessner (eds.). Methods to study litter decomposition. Dordrecht: Springer.

Barreto, C. C. 1999. Heterogeneidade espacial do hábitat e diversidade específica: implicações ecológicas e métodos de mensuração. Oecologia Brasiliensis 7:121-153.

Bedford, A. P. 2004. A modified litter bag design for use in lentic habitat. Hydrobiologia 529:187-193.

Bellisario, B., F. Cerfolli, and G. Nascetti. 2012. The interplay between network structure and functioning of detritus-based communities in patchy aquatic environment. Aquatic Ecology 46:431-441.

Biasi, C., A. M. Tonin, R. M. Restello, and L. U. Hepp. 2013. The colonisation of leaf litter by Chironomidae (Diptera): the influence of chemical quality and exposure duration in a subtropical stream. Limnologica 43:427-433.

Callisto, M., M. Goulart, A. O. Medeiros, P. Moreno, and C. A. Rosa. 2004. Diversity assessment of benthic macroinvertebrates, yeasts, and microbiological indicators along a longitudinal gradient in Serra do Cipó, Brazil. Brazilian Journal of Biology 64:743-755.

Carvalho, C., L. U. Hepp, C. Palma-Silva, and E. F. Albertoni. 2015. Decomposition of macrophytes in a shallow subtropical lake. Limnologica 53:1-9.

Casagranda, C., M. S. Dridi, and C. F. Boudouresque. 2006. Abundance, population structure and production of macro-invertebrate shredders in a Mediterranean brackish lagoon, Lake Ichkeul, Tunisia. Estuarine, Coastal and Shelf Science 66:437-446.

Cummins, K. W., R. W. Merritt, and P. C. N. Andrade. 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil Studies on Neotropical Fauna and Environment 40:69-89.

Domínguez, E., and H. R. Fernández (ed.). 2009. Guía para la determinación de los artrópodos bentónicos sudamericanos. 2ª Ed. Tucumán: Editorial Universitaria de Tucumán. Pp. 654.

Esteves, F. A. 2011. Fundamentos de Limnologia. 3ª ed. Rio de Janeiro. Interciência. Pp. 790.

Gimenes, K. Z., M. B. Cunha-Santino, and I. Bianchini Jr. 2010. Decomposição de matéria orgânica alóctone e autóctone em ecossistemas aquáticos. Oecologia Australis 14:1075-1112.

Gonçalves Jr, J. F., F. A. Esteves, and M. Callisto. 2003. Chironomids colonization on Nymphaeae ampla L. detritus during a degradative ecological succession experiment in Brazilian coastal lagoon. Acta Limnologica Brasiliensia 15:21-27.

Gonçalves Jr, J. F., A. M. Santos, and F. A. Esteves. 2004. The influence of the chemical composition of Typha domingensis and Nymphaea ampla detritus on invertebrate colonization during decomposition in a Brazilian coastal lagoon. Hydrobiologia 527:125-137.

Hansen J. P., S. A. Wikström, H. Axemar, and L. Kautsky. 2011. Distribution differences and active habitat choices of invertebrates between macrophytes of different morphological complexity. Aquatic Ecology 45:11-22.

Hannigan, E., and K. M. Quinn. 2012. Composition and structure of macroinvertebrate communities in contrasting open-water habitat in Irish peatlands: implications for biodiversity conservation. Hydrobiologia 692:19-28

Hepp, L. U., V. L. Landeiro, and A. S. Melo. 2012. Experimental assessment of the effects of environmental factors and longitudinal position on alpha and beta diversities of aquatic insects in a neotropical stream. International Review of Hydrobiologia 97:157-167.

Krebs, C. J. 2014. Ecological methodology. 3rd ed. URL: www.zoology.ubc.ca/~krebs/books.html.

Kovalenko, K. E., S. M. Thomaz, and D. M. Warfe. 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685:1-17.

Janke, H., and S. Trivinho-Strixino. 2007. Colonization of leaf litter by aquatic macroinvertebrates: a study in a low order tropical stream. Acta Limnologica Brasiliensia 19:109-115.

Lopes, A., J. D. Paula, S. F. Mardegan, N. Hamada, and. M. T. F. Piedade. 2011. Influência do hábitat na estrutura da comunidade de macroinvertebrados aquáticos associados às raízes de Eichhornia crassipes na região do Lago Catalão, Amazonas, Brasil. Acta Amazonica 41:493-502.

Merritt, R. W., K. W. Cummins, and M. B. Berg. 2008. An Introduction to the Aquatic Insects of North America. Dubuque, Kendall/Hunt Publishing Co. Pp. 1158.

Nelson, M. 2011. Comparisons of macrophyte breakdown, associated plant chemistry, and macroinvertebrates in a wastewater dominated stream. International Review of Hydrobiologia 96:72-89.

Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. G. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner. 2012. Vegan: Community Ecology Package. R package version 1.17-0. URL: CRAN.R-project.org/package=vegan.

Padisák, J., and C. S. Reynolds. 2003. Shallow lakes: the absolute, the relative, the functional and the pragmatic. Hydrobiologia 506-509:1-11.

Pereira, S. A., C. R. T. Trindade, E. F. Albertoni, and C. Palma-Silva. 2012. Aquatic macrophytes as indicators of water quality in subtropical shallow lakes, Southern Brazil Acta Limnologica Brasiliensia 24(1):52-63

Poi de Neiff, A., M. E. Galassi, and M. C. Franceschini. 2009. Invertebrate assemblages associated with leaf litter in three floodplain wetlands of the Parana river. Wetlands 29:896-906

Ramírez, A., and P. E. Gutiérrez-Fonseca. 2014. Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature. Revista de Biología Tropical 62(suppl. 2):155-167.

R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: www.R-project.org.

Rossi, L., M. L. Costantini, P. Carlino, A. Lascio, and D. Rossi. 2010. Autochthonous and allochthonous plant contributions to coastal benthic detritus deposits: a dual-stable isotope study in a volcanic lake. Aquatic Science 72:227-236.

Silva, J. S., W. T. Silveira, E. F. Albertoni, and C. Palma-Silva. 2010. Diversity of Chironomidae (Diptera) during the decomposition of Nymphoides indica (L.) Kuntze in two subtropical lakes with different trophic levels (south Brazil). Panamerican Journal of Aquatic Sciences 5:557-571.

Silva, J. S., E. F. Albertoni, and C. Palma-Silva. 2015. Temporal variation of phytophilous Chironomidae over a 11-year period in a shallow Neotropical lake in southern Brazil Hydrobiologia 742:129-140

Stripari, N. de L., and R. Henry. 2002. The invertebrate colonization during decomposition of Eichhornia azurea kunth in a lateral lake in the mouth zone of Paranapanema river into Jurumirim reservoir (São Paulo, Brazil). Brazilian Journal of Biology 62:293-310.

Telöken F., E. F. Albertoni, and C. Palma-Silva. 2011. Leaf degradation of Salix humboldtiana Willd. (Salicaceae) and invertebrate colonization in a subtropical lake (Brazil). Acta Limnologica Brasiliensia 23:30-41.

Telöken, F., E. F. Albertoni, L. U. Hepp, and C. Palma-Silva. 2014. Invertebrados aquáticos associados a serapilheira de Salix humboldtiana em um riacho subtropical. Ecología Austral 24:220-228.

Titus, J. E., and A. M. Pagano. 2002. Decomposition of litter from submersed macrophytes: the indirect effects of high (CO2). Freshwater Biology 47:1367-1375.

Thomaz, S. M., E. D. Dibble, L. R. Evangelista, J. Higuti, and L. M. Bini. 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53:358-367.

Wallace, J. B., and J. R. Webster. 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41:115-139.

Wantzen, K. M., and R. Wagner. 2006. Detritus processing by invertebrate shredders: a neotropical-temperate comparison. Journal of the North American Benthological Society 25:216-232.

Wardle, D. A., and G. W. Yeates. 1993. The dual importance of competition and predation as regulatory forces in terrestrial ecosystems: evidence from decomposer food-webs. Oecologia 93:303-306.

Wetzel, R. G. 1993. Limnologia. Lisboa: Fundação Calouste Gugelheim. Pp. 919.

Van Den Berg, M. S., H. Coops, R. Noordhuis., J. Van Schie, and J. Simons. 1997. Macroinvertebrate communities in relation to submerged vegetation in two Chara-dominated lakes. Hydrobiologia 342-343:143-150.

Van Den Berg, M. S., H. Coops, J. Simons, and A. Keizer. 1998. Competition between Chara aspera and Potamogeton pectinatus as a function of temperature and light. Aquatic Botany 60:241-250.

Vandel, E. 2010. Effect of vegetation on alpha cellulose decomposition in littoral lake sediments. Aquatic Botany 93:179-184.

Zilli, F. L., L. Montalto, and M. R. Marchese. 2008. Benthic invertebrate assemblages and functional feeding groups in the Paraná River floodplain (Argentina). Limnologica 38:159-171.

Composición funcional de invertebrados en los detritos de macrófitas sumergidas: efectos del hábitat y del tiempo de degradación

Descargas

Publicado

2018-03-19

Cómo citar

Faria Albertoni, E., Ubiratan Hepp, L., Carvalho, C., & Palma-Silva, C. (2018). Composición funcional de invertebrados en los detritos de macrófitas sumergidas: efectos del hábitat y del tiempo de degradación. Ecología Austral, 28(1), 093–103. https://doi.org/10.25260/EA.18.28.1.0.462