¿Blanco, negro o escala de grises? Determinación de la contribución relativa del nicho ecológico y la teoría neutral en los ensambles de especies

Autores/as

  • Juan Alberti Instituto de Investigaciones Marinas y Costeras (IIMyC) - FCEyN, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).
  • Pedro Daleo Instituto de Investigaciones Marinas y Costeras (IIMyC) - FCEyN, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).
  • Oscar Iribarne Instituto de Investigaciones Marinas y Costeras (IIMyC) - FCEyN, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

DOI:

https://doi.org/10.25260/EA.18.28.1.0.622

Resumen

Según la teoría del nicho ecológico, la composición de especies en un lugar dado debería estar determinada por la conjunción de los factores bióticos y abióticos que allí actúan. En cambio, la teoría neutral propone que las especies son equivalentes y que la composición de ensambles locales está dada, entonces, por procesos de colonización y extinción independientes de las especies. Hoy en día se sabe que es difícil encontrar en la naturaleza ensambles puramente neutrales o puramente basados en el nicho ecológico, sino que lo que priman son ensambles intermedios. Los ensambles con una impronta fuerte del nicho ecológico están muy influidos por las interacciones interespecíficas o por los forzantes ambientales, mientras que los ensambles neutrales están más influidos por la deriva ecológica o por las dinámicas de extinción y colonización en base a las abundancias de las especies. El concepto de beta diversidad se tornó especialmente popular durante la última década y ha sido utilizado con diferentes finalidades en una gran variedad de ambientes. En particular, ganó mucha relevancia como herramienta para estimar la importancia relativa del nicho ecológico en los ensambles de especies. Esto se puede evaluar de forma sencilla con el uso de modelos neutrales ad hoc. En un ensamble puramente neutral, la variabilidad en la composición del ensamble entre muestras no debería ser diferente a la esperada como producto de una selección de especies al azar del total regional de especies (diversidad gama) para cada muestra (diversidad alfa). Cuanto más se aleje la variabilidad a la esperable por azar, mayor será la importancia relativa del nicho ecológico. Recientemente, hubo un gran avance en entender qué tipos de factores promueven uno u otro ensamble. Sin embargo, al ser un campo relativamente nuevo queda aún mucho por saber (e.g., interacción de factores, relación tiempoespacio, diferencias entre niveles tróficos). En este trabajo revisamos los alcances y la metodología de una temática que está viviendo un desarrollo marcado dentro de la ecología de comunidades, y discutimos algunos de los aspectos relevantes y relacionados que, por el momento, no fueron estudiados.

https://doi.org/10.25260/EA.18.28.1.0.622

Citas

Adler, P. B., J. HilleRisLambers, and J. M. Levine. 2007. A niche for neutrality. Ecology Letters 10:95-104.

Anderson, M. J., T. O. Crist, J. M. Chase, M. Vellend, B. D. Inouye, A. L. Freestone, N. J. Sanders, H. V. Cornell, L. S. Comita, K. F. Davies, S. P. Harrison, N. J. B. Kraft, J. C. Stegen, and N. G. Swenson. 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14:19-28.

Anderson, M. J., K. E. Ellingsen, and B. H. McArdle. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9:683-693.

Borer, E. T., E. W. Seabloom, D. S. Gruner, W. S. Harpole, H. Hillebrand, E. M. Lind, P. B. Adler, J. Alberti, T. M. Anderson, J. D. Bakker, L. Biederman, D. Blumenthal, et al. 2014. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508:517-520.

Brown, S. P., and A. Jumpponen. 2014. Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Molecular Ecology 23:481-497.

Bruno, J. F., J. J. Stachowicz, and M. D. Bertness. 2003. Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution 18:119-125.

Caruso, T., Y. Chan, D. C. Lacap, M. C. Y. Lau, C. P. McKay, and S. B. Pointing. 2011. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. The ISME Journal 5:1406-1413.

Caruso, T., J. R. Powell, and M. C. Rillig. 2012a. Compositional divergence and convergence in local communities and spatially structured landscapes. PLOS ONE 7:e35942.

Caruso, T., M. Taormina, and M. Migliorini. 2012b. Relative role of deterministic and stochastic determinants of soil animal community: a spatially explicit analysis of oribatid mites. Journal of Animal Ecology 81:214-221.

Catano, C. P., T. L. Dickson, and J. A. Myers. 2017. Dispersal and neutral sampling mediate contingent effects of disturbance on plant beta-diversity: a meta-analysis. Ecology Letters 20:347-356.

Chase, J. M. 2007. Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences of the United States of America 104:17430-17434.

Chase, J. M. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:1388-1391.

Chase, J. M., E. G. Biro, W. A. Ryberg, and K. G. Smith. 2009. Predators temper the relative importance of stochastic processes in the assembly of prey metacommunities. Ecology Letters 12:1210-1218.

Chase, J. M., N. J. B. Kraft, K. G. Smith, M. Vellend, and B. D. Inouye. 2011. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2:art24.

Chase, J. M., and J. A. Myers. 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences 366:2351-2363.

Clark, C. M., and D. Tilman. 2008. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712-715.

Clements, F. E. 1916. Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington.

Connell, J. H. 1961. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42:710-723.

Dini-Andreote, F., J. C. Stegen, J. D. van Elsas, and J. F. Salles. 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America 112:E1326-E1332.

Etienne, R. S. 2007. A neutral sampling formula for multiple samples and an ‘exact’ test of neutrality. Ecology Letters 10:608-618.

Etienne, R. S. 2009. Improved estimation of neutral model parameters for multiple samples with different degrees of dispersal limitation. Ecology 90:847-852.

Harpole, W. S., and D. Tilman. 2007. Grassland species loss resulting from reduced niche dimension. Nature 446:791-793.

Hautier, Y., P. A. Niklaus, and A. Hector. 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324:636-638.

Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, New Jersey.

Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22:415-427.

Hutchinson, G. E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist 93:145-159.

Korhonen, J. J., J. Soininen, and H. Hillebrand. 2010. A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology 91:508-517.

Kraft, N. J. B., P. B. Adler, O. Godoy, E. C. James, S. Fuller, and J. M. Levine. 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29:592-599.

Kraft, N. J. B., L. S. Comita, J. M. Chase, N. J. Sanders, N. G. Swenson, T. O. Crist, J. C. Stegen, M. Vellend, B. Boyle, M. J. Anderson, H. V. Cornell, K. F. Davies, A. L. Freestone, B. D. Inouye, S. P. Harrison, and J. A. Myers. 2011. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333:1755-1758.

Leibold, M. A., and M. A. McPeek. 2006. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399-1410.

MacArthur, R. H. 1972. Geographical ecology: patterns in the distribution of species. Princeton University Press, New Jersey, US.

MacArthur, R. H., and E. O. Wilson. 1967. The theory of island biogeography. Princeton University Press, New Jersey.

McNaughton, S. J. 1983. Serengeti grassland ecology: the role of composite environmental factors and contingency in community organization. Ecological Monographs 53:291-320.

Menge, B. A., and J. P. Sutherland. 1976. Species diversity gradients: synthesis of the roles of predation, competition, and temporal heterogeneity. American Naturalist 110:351-369.

Mori, A. S., S. Fujii, R. Kitagawa, and D. Koide. 2015. Null model approaches to evaluating the relative role of different assembly processes in shaping ecological communities. Oecologia 178:261-273.

Myers, J. A., J. M. Chase, I. Jiménez, P. M. Jørgensen, A. Araujo-Murakami, N. Paniagua-Zambrana, and R. Seidel. 2013. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters 16:151-157.

Paine, R. T. 1966. Food web complexity and species diversity. American Naturalist 100:65-75.

Powell, J. R., S. Karunaratne, C. D. Campbell, H. Yao, L. Robinson, and B. K. Singh. 2015. Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nature Communications 6:8444.

Qian, H., S. Chen, L. Mao, and Z. Ouyang. 2013. Drivers of β-diversity along latitudinal gradients revisited. Global Ecology and Biogeography 22:659-670.

Sabatini, F. M., B. Jiménez-Alfaro, S. Burrascano, A. Lora, and M. Chytrý. in press. Beta-diversity of Central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography doi:10.1111/ecog.02809.

Schmidt, S. K., D. R. Nemergut, J. L. Darcy, and R. Lynch. 2014. Do bacterial and fungal communities assemble differently during primary succession? Molecular Ecology 23:254-258.

Segre, H., R. Ron, N. De Malach, Z. Henkin, M. Mandel, and R. Kadmon. 2014. Competitive exclusion, beta diversity, and deterministic vs. stochastic drivers of community assembly. Ecology Letters 17:1400-1408.

Soininen, J., J. J. Lennon, and H. Hillebrand. 2007. A multivariate analysis of beta diversity across organisms and environments. Ecology 88:2830-2838.

Stachowicz, J. J. 2001. Mutualism, facilitation and the structure of ecological communities. Bioscience 51:235-246.

Stegen, J. C., A. L. Freestone, T. O. Crist, M. J. Anderson, J. M. Chase, L. S. Comita, H. V. Cornell, K. F. Davies, S. P. Harrison, A. H. Hurlbert, B. D. Inouye, N. J. B. Kraft, J. A. Myers, N. J. Sanders, N. G. Swenson, and M. Vellend. 2013a. Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Global Ecology and Biogeography 22:202-212.

Stegen, J. C., X. Lin, J. K. Fredrickson, X. Chen, D. W. Kennedy, C. J. Murray, M. L. Rockhold, and A. Konopka. 2013b. Quantifying community assembly processes and identifying features that impose them. The ISME Journal 7:2069-2079.

Steiner, C. F. 2014. Stochastic sequential dispersal and nutrient enrichment drive beta diversity in space and time. Ecology 95:2603-2612.

Tucker, C. M., L. G. Shoemaker, K. F. Davies, D. R. Nemergut, and B. A. Melbourne. 2016. Differentiating between niche and neutral assembly in metacommunities using null models of β-diversity. Oikos 125:778-789.

Tuomisto, H. 2010. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2-22.

Ulrich, W., and N. J. Gotelli. 2010. Null model analysis of species associations using abundance data. Ecology 91:3384-3397.

Vellend, M. 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology 85:183-206.

Vellend, M., D. S. Srivastava, K. M. Anderson, C. D. Brown, J. E. Jankowski, E. J. Kleynhans, N. J. B. Kraft, A. D. Letaw, A. A. M. Macdonald, J. E. Maclean, I. H. Myers-Smith, A. R. Norris, and X. Xue. 2014. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123:1420-1430.

Vellend, M., K. Verheyen, K. M. Flinn, H. Jacquemyn, A. Kolb, H. Van Calster, G. Peterken, B. J. Graae, J. Bellemare, O. Honnay, J. Brunet, M. Wulf, F. Gerhardt, and M. Hermy. 2007. Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. Journal of Ecology 95:565-573.

Whittaker, R. H. 1960. Vegetation of the siskiyou mountains, Oregon and California. Ecological Monographs 30:279-338.

Zhou, J., W. Liu, Y. Deng, Y.-H. Jiang, K. Xue, Z. He, J. D. V. Nostrand, L. Wu, Y. Yang, and A. Wang. 2013. Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community. mBio 4:e00584-12.

¿Blanco, negro o escala de grises? Determinación de la contribución relativa del nicho ecológico y la teoría neutral en los ensambles de especies

Descargas

Archivos adicionales

Publicado

2018-03-19

Cómo citar

Alberti, J., Daleo, P., & Iribarne, O. (2018). ¿Blanco, negro o escala de grises? Determinación de la contribución relativa del nicho ecológico y la teoría neutral en los ensambles de especies. Ecología Austral, 28(1), 104–112. https://doi.org/10.25260/EA.18.28.1.0.622