Modelación de los cambios químicos en suelos inducidos por la forestación de pastizales naturales en ecosistemas de llanura

Autores/as

  • Claudio R. Mujica Instituto de Hidrología de Llanuras, Universidad Nacional del Centro de la Provincial de Buenos Aires y CONICET.
  • Germán M. Milione Instituto de Hidrología de Llanuras, Universidad Nacional del Centro de la Provincial de Buenos Aires y CONICET.
  • Sergio A. Bea Instituto de Hidrología de Llanuras, Universidad Nacional del Centro de la Provincial de Buenos Aires y CONICET.
  • Esteban G. Jobbágy Grupo de Estudios Ambientales, IMASL, Universidad Nacional de San Luis y CONICET, San Luis, Argentina.

DOI:

https://doi.org/10.25260/EA.19.29.3.0.896

Resumen

El reemplazo de pastizales por forestaciones es uno de los cambios más extremos en el uso del suelo por su impacto en el suelo y en el funcionamiento de la vegetación. En los ecosistemas de llanuras, este cambio generó, en muchos casos, alteraciones químicas en los suelos como salinización, sodificación y alcalinización/acidificación. Si bien los procesos hídricos, químicos y biológicos que tienen lugar fueron extensamente caracterizados, debido al acoplamiento entre estos procesos y su no-linealidad, la tarea de cuantificarlos es difícil y, hasta el momento, no existen estudios que los hayan evaluado. El presente trabajo intenta caracterizar, mediante la modelación del transporte reactivo, los procesos físico-químicos que tienen lugar en un pastizal forestado con Eucalyptus camaldulensis en la Pampa Deprimida (Castelli, provincia de Buenos Aires). Para ello, se utilizó información hidrológica y química (agua, suelo y plantas). El modelo numérico simula los flujos de agua y las potenciales reacciones químicas en el contexto de reproducir 1) las alteraciones hidrológicas que causa la forestación y por 2) la intrusión de agua salina profunda, 3) la absorción y la exudación de nutrientes por las raíces, y 4) la respiración y el reciclaje de solutos. Los resultados de la modelación sugieren que factores como la composición química de la napa freática, el intercambio catiónico de los materiales del suelo con la solución del suelo, la precipitación/disolución de minerales y la interacción con la rizósfera (toma/exclusión/exudación de solutos) son los mecanismos dominantes que controlarían la dirección del cambio químico en el suelo (acidificación vs. alcalinización). Este cambio muestra contrastes marcados en distancias cortas (250 m) desde el pastizal, pasando por el margen, hasta el centro del sector forestado. Finalmente, la intensidad y la dirección de los cambios, y la transformación del suelo dependerá tanto del nuevo ecosistema que los humanos imponen como de la naturaleza química e hidrológica del sitio.

https://doi.org/10.25260/EA.19.29.3.0.896

Citas

Ae, N., J. Arihara, K. Okada, and A. Srinivasan. 2001. Plant nutrient acquisition: new perspectives. Springer Science and Business Media. Pp 71-100.

Allen, G.R., L. S. Pereira, D. Raes, and M. Smith. 2006. Crop evapotranspiration- Guidelines for computing crop water requirements-FAO. Irrigation and drainage. Water Resources, Development and Management Service, Rome, Italy, 1998, paper 56. Pp 323.

Allison, J. D., D. S. Brown, and K. J. Novo-Gradac. 1991. MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: version 3.0 user's manual. Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency.

Amiro, B. D., and L. L. Ewing. 1992. Physiological conditions and uptake of inorganic carbon-14 by plant roots. Environmental and Experimental Botany 32(3):203-211.

Appelo, C. A. J., and D. Postma. 2004. Geochemistry, groundwater and pollution. CRC press.

Arnold, G. 1992. Soil acidification as caused by the nitrogen uptake pattern of Scots pine (Pinus sylvestris). Plant and Soil 142(1):41-51.

Baldi, G., and J. Paruelo. 2008. Land-Use and Land Cover Dynamics in South American Temperate Grasslands. Ecology and Society 13(2):6. https://doi.org/10.5751/ES-02481-130206.

Battaglia, M., and P. Sands. 1997. Modelling site productivity of Eucalyptus globulus in response to climatic and site factors. Functional Plant Biology 24(6):831-850. https://doi.org/10.1071/PP97065.

BDH. 2019. Base de Datos Hidrológicos. URL: http://www.bdh.acumar.gov.ar/bdh3/index_contenido.php (último acceso octubre 2019).

Bea, S. A., H. Wainwright, N. Spycher, B. Faybishenko, S. S. Hubbard, and M. E. Denham. 2013. Identifying key controls on the behavior of an acidic-U (VI) plume in the Savannah River Site using reactive transport modeling. Journal of Contaminant Hydrology 151:34-54.

Bea, S. A., S. A. Wilson, K. U. Mayer, G. M. Dipple, I. M. Power, and P. Gamazo. 2012. Reactive Transport Modeling of Natural Carbon Sequestration in Ultramafic Mine Tailings. Vadose Zone Journal 11(2). https://doi.org/10.2136/vzj2011.0053.

Bea, S. A., U. K. Mayer, and K. T. B. MacQuarrie. 2016. Reactive transport and thermo‐hydro‐mechanical coupling in deep sedimentary basins affected by glaciation cycles: model development, verification, and illustrative example. Geofluids 16(2):279-300.

Berthrong, S. T., E. G. Jobbágy, and R. B. Jackson. 2009. A global meta‐analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications 19(8):2228-2241.

Besteiro, S. 2014. Evaluación de la influencia hidrológica de forestaciones en la llanura pampeana. (tesis de doctorado). URL: sedici.unlp.edu.ar/handle/10915/33806. La Plata, Buenos Aires: Universidad Nacional de La Plata.

Bowman, W. D., C. C. Cleveland, Ĺ. Halada, J. Hreško, and J. S. Baron. 2008. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience 1(11):767.

Burkart, S. E., M. F. Garbulsky, C. M. Ghersa, J. P. Guerschman, R. J. C. León, et al. 2005. Las comunidades potenciales del pastizal pampeano bonaerense. La Heterogeneidad de La Vegetación de Los Agroecosistemas. Un Homenaje a Rolando León. Ed. Facultad de Agronomía. Buenos Aires, Argentina. Pp. 379-400.

Cabrera, A. L. 1976. Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería (2da. ed.). Tomo II, Fase 1 ACME, Buenos Aires. Pp. 85.

Calder, I. R. 1998. Water use by forests, limits and controls. Tree Physiology 18(8-9):625-631. https://doi.org/10.1093/treephys/18.8-9.625.

Carol, E., E. Kruse, and J. Pousa. 2008. Environmental hydrogeology of the southern sector of the Samborombón Bay wetland, Argentina. Environmental Geology 54(1):95-102.

Carretero, S. C., C. Dapeña, and E. E. Kruse. 2013. Hydrogeochemical and isotopic characterization of groundwater in a sand-dune phreatic aquifer on the northeastern coast of the province of Buenos Aires, Argentina. Isotopes in Environmental and Health Studies 49(3):399-419.

Dakora, F. D., and D. A. Phillips. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities. Springer, Dordrecht. Pp. 201-213.

Engel, V., E. G. Jobbágy, M. Stieglitz, M. Williams, and R. B. Jackson. 2005. Hydrological consequences of Eucalyptus afforestation in the Argentine Pampas. Water Resources Research 41(10):1-14. https://doi.org/10.1029/2004WR003761.

Epron, D., Y. Nouvellon, O. Roupsard, W. Mouvondy, A. Mabiala, et al. 2004. Spatial and temporal variations of soil respiration in a Eucalyptus plantation in Congo. Forest Ecology and Management 202(1-3):149-160. https://doi.org/10.1016/j.foreco.2004.07.019.

Fuchs, R., M. Herold, P. H. Verburg, J. G. Clevers, and J. Eberle. 2015. Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Global Change Biology 21(1):299-313.

Gérard, F., C. Blitz-Frayret, P. Hinsinger, and L. Pagès. 2017. Modelling the interactions between root system architecture, root functions and reactive transport processes in soil. Plant and Soil 413(1-2):161-180. https://doi.org/10.1007/s11104-016-3092-x.

Heuperman, A. 1999. Hydraulic gradient reversal by trees in shallow water table areas and repercussions for the sustainability of tree-growing systems. Agricultural Water Management 39(2-3):153-167. https://doi.org/10.1016/S0378-3774(98)00076-6.

Hinsinger, P., G. R. Gobran, P. J. Gregory, and W. W. Wenzel. 2005. Rhizosphere geometry and heterogeneity arising from root mediated physical and chemical processes. New Phytologist 168:293-303. https://doi.org/10.1111/j.1469-8137.2005.01512.x.

Hong, S., P. Gan, and A. Chen. 2019. Environmental controls on soil pH in planted forest and its response to nitrogen deposition. Environmental Research 172:159-165. https://doi.org/S0013935119300933.

Hong, S., S. Piao, A. Chen, Y. Liu, L. Liu, et al. 2018. Afforestation neutralizes soil pH. Nature Communications 9(1):520.

Hopmans, J. W., and K. L. Bristow. 2002. Current capabilities and future needs of root water and nutrient uptake modeling. Pp. 103-183 in Advances in Agronomy. Vol. 77. Academic Press.

Ickowitz, A., B. Powell, D. Rowland, A. Jones, and T. Sunderland. 2019. Agricultural intensification, dietary diversity, and markets in the global food security narrative. Global Food Security 20:9-16. doi:10.1016/j.gfs.2018.11.002.

INTA. 2011. Cartas de Suelos de la República Argentina. Hoja 3757-02 - DOLORES. CIRN, INTA, Buenos Aires. URL: anterior.inta.gov.ar/suelos/cartas/3757/Dolores/index.htm.

Jackson, R. B., J. Canadell, J. R. Ehleringer, H. A. Mooney, O. E. Sala, and E. D. Schulze. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108(3):389-411. https://doi.org/10.1007/BF00333714.

Jackson, R. B., S. R. Carpenter, C. N. Dahm, D. M. McKnight, R. J. Naiman, S. L. Postel, and S. W. Running. 2001. Water in a changing world. Ecological Applications 11(4):1027-1045. https://doi.org/10.1890/1051-0761(2001)011[1027:WIACW]2.0.CO;2.

Jobbágy, E. G., and Jackson, R. B. 2003. Patterns and Mechanisms of Soil Acidification in the Conversion of Grasslands to Forests 64(2):205-229.

Jobbágy, E. G., and R. B. Jackson. 2001. The distribution of soil nutriments with depth: Global patterns of the imprint of plants. Biogeochemistry 53:51-77.

Jobbágy, E. G., and R. B. Jackson. 2004. Groundwater use and salinization with grassland afforestation. Global Change Biology 10(8):1299-1312. https://doi.org/10.1111/j.1365-2486.2004.00806.x.

Jobbágy, E. G., and R. B. Jackson. 2007. Groundwater and soil chemical changes under phreatophytic tree plantations. Journal of Geophysical Research: Biogeosciences 112(2):1-15. https://doi.org/10.1029/2006JG000246.

Jobbágy, E. G., G. Piñeiro, M. D. Nosetto, and J. M. Paruelo. 2006. Las forestaciones rioplatenses y el agua. Ciencia Hoy 16(95):12-21.

Jobbágy, E. G., T. Tóth, M. D. Nosetto, and S. Earman. 2017. On the Fundamental Causes of High Environmental Alkalinity (pH ≥ 9): An Assessment of Its Drivers and Global Distribution. Land Degradation and Development 28(7):1973-1981. https://doi.org/10.1002/ldr.2718.

Kunito, T., I. Isomura, H. Sumi, H. D. Park, H. Toda, et al. 2016. Aluminum and acidity suppress microbial activity and biomass in acidic forest soils. Soil Biology and Biochemistry 97:23-30.

Lal, R. 2003. Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degradation and Development 14(3):309-322. https://doi.org/10.1002/ldr.562.

Mayer, K. U., E. O. Frind, and D. W. Blowes. 2002. Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resources Research 38(9):1174. https://doi.org/10.1029/2001WR000862.

Mayer, K., R. Amos, S. Molins, and F. Gerard. 2012. Reactive transport modeling in variably saturated media with min3p: Basic model formulation and model enhancements. Groundwater Reactive Transport Models. Pp. 186-211. https://doi.org/10.2174/978160805306311201010186.

Milione G. M., C. R. Mujica, S. A. Bea, D. Domínguez Daguer, and J. E. Gyenge. 2018. Forestación en pastizales: el rol de las especies y el manejo forestal sobre el proceso de salinización secundaria de suelos. Revista de investigaciones agropecuarias (RIA). ISSN 1669-2314. En prensa.

Miller, R., B. Wesley, and P. Norman. 1988. Specific Conductance: Theoretical Considerations and Application to Analytical Quality Control. United States Geological Survey Water-Supply 2311:3-6.

Modernel, P., W. A. Rossing, M. Corbeels, S. Dogliotti, V. Picasso, and P. Tittonell. 2016. Land use change and ecosystem service provision in Pampas and Campos grasslands of southern South America. Environmental Research Letters 11(11):113002.

Nosetto, M. D., E. G. Jobbágy, A. B. Brizuela, and R. B. Jackson. 2012. The hydrologic consequences of land cover change in central Argentina. Agriculture, Ecosystems and Environment 154:2-11. https://doi.org/10.1016/j.agee.2011.01.008.

Nosetto, M. D., E. G. Jobbágy, T. Tóth, and C. M. Di Bella. 2007. The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands. Oecologia 152(4):695-705. https://doi.org/10.1007/s00442-007-0694-2.

Nosetto, M. D., E. G. Jobbágy, T. Tóth, and R. B. Jackson. 2008. Regional patterns and controls of ecosystem salinization with grassland afforestation along a rainfall gradient. Global Biogeochemical Cycles 22(2):1-12. https://doi.org/10.1029/2007GB003000.

Nowack, B., K. U. Mayer, S. E. Oswald, W. Van Beinum, C. A. J. Appelo, et al. 2006. Verification and intercomparison of reactive transport codes to describe root-uptake. Plant and Soil 285(1-2):305-321. https://doi.org/10.1007/s11104-006-9017-3.

Nye, P. H. 1981. Changes of pH across the rhizosphere induced by roots. Plant and Soil 61(1-2):7-26. https://doi.org/10.1007/BF02277359.

O’Connell, A. M. 1987. Litter decomposition, soil respiration and soil chemical and biochemical properties at three contrasting sites in karri (Eucalyptus diversicolor F. Muell.) forests of south‐western Australia. Australian Journal of Ecology 12(1):31-40. https://doi.org/10.1111/j.1442-9993.1987.tb00925.x.

Parkhurst, D. L., and C. A. J. Appelo. 1999. User’s guide to PHREEQC (version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99(4259):312.

Raich, J. W., and A. Tufekcioglu. 2000. Vegetation and Soil Respiration: Correlations and Controls. Biogeochemistry 48(1):71-90.

Ramankutty, N., Z. Mehrabi, K. Waha, L. Jarvis, C. Kremen, M. Herrero, and L. H. Rieseberg. 2018. Trends in global agricultural land use: implications for environmental health and food security. Annual Review of Plant Biology 69:789-815.

Rhoades, J. D., N. A. Manteghi, P. J. Shouse, and W. J. Alves. 1989. Soil Electrical Conductivity and Soil Salinity: New Formulations and Calibrations. Soil Science Society of America Journal 53(2):433. https://doi.org/10.2136/sssaj1989.03615995005300020020x.

Richter, D. D. 1986. Sources of Acidity in Some Forested Udults 1. Soil Science Society of America Journal 50(6):1584-1589.

Saviozzi, A., R. Levi-Minzi, R. Cardelli, and R. Riffaldi. 2001. A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant and Soil 233(2):251-259.

Schaap, M. G., F. J. Leij, and M. T. Van Genuchten. 2001. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology 251(3-4):163-176. https://doi.org/10.1016/S0022-1694(01)00466-8.

Šimůnek, J., and J. W. Hopmans. 2009. Modeling compensated root water and nutrient uptake. Ecological Modelling 220(4):505-521

Soriano, A. 1991. Río de la Plata grasslands. Pp. 367-405 in Natural Grasslands: Introduction and Western Hemisphere. R. T. Coupland (ed.). Elsevier, New York.

Steefel, C. I., C. A. J. Appelo, B. Arora, D. Jacques, T. Kalbacher, et al. 2014. Reactive transport codes for subsurface environmental simulation. Computational Geosciences 19(3):445-478. doi:10.1007/s10596-014-9443-x.

Sumner, M. E. 1993. Sodic soils-New perspectives. Soil Research 31(6):683-750.

Teakle, N. L., and S. D. Tyerman. 2010. Mechanisms of Cl- transport contributing to salt tolerance. Plant, Cell and Environment 33(4):566-589. https://doi.org/10.1111/j.1365-3040.2009.02060.x.

Teruggi, M. E. 1957. The Nature and Origin of Argentine Loess. SEPM Journal of Sedimentary Research 27(3):322-332. https://doi.org/10.1306/74D706DC-2B21-11D7-8648000102C1865D.

Tricart, J. L. 1973. Geomorfología de la Pampa Deprimida: Base Para los Estudios Edafológicos y Agronómicos, Colección Cient. Vol. 12. Inst. Nac. Tecnol. Agropecuaria, Buenos Aires. Pp. 202.

van Breemen, N., and P. Buurman. 2002. Soil formation. Springer Science and Business Media.

van Breemen, N., J. Mulder, and C. T. Driscoll. 1983. Acidification and alkalinization of soils. Plant and Soil 75(3):283-308. https://doi.org/10.1007/BF02369968.

van Genuchten, M. T. 1980. Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal 44(5):892-898.

Varni, M. R., and E. J. Usunoff. 1999. Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province, Argentina. Hydrogeology Journal 7(2):180-187. https://doi.org/10.1007/s100400050190.

Viglizzo, E. F., F. Lértora, A. J. Pordomingo, J. N. Bernardos, Z. E. Roberto, and H. Del Valle. 2001. Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agriculture, Ecosystems and Environment. https://doi.org/10.1016/S0167-8809(00)00155-9.

Xie, M., K. Mayer, F. Claret, P. Alt-Epping, D. Jacques, C. Steefel, C. Chiaberge, and J. Simunek. 2014. Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation. Computational Geosciences 19:655-71.

Zabala, M. E., S. Martínez, M. Manzano, and L. Vives. 2016. Groundwater chemical baseline values to assess the Recovery Plan in the Matanza-Riachuelo River basin, Argentina. Science of the Total Environment 541:1516-1530. https://doi.org/10.1016/j.scitotenv.2015.10.006.

Zárate, M. A. 2003. Loess of southern South America. Quaternary Science Reviews 22(18-19):1987-2006. https://doi.org/10.1016/S0277-3791(03)00165-3.

Modeling soil chemical changes induced by afforestation of natural grasslands in large plain ecosystems

Descargas

Publicado

2019-11-22

Cómo citar

Mujica, C. R., Milione, G. M., Bea, S. A., & Jobbágy, E. G. (2019). Modelación de los cambios químicos en suelos inducidos por la forestación de pastizales naturales en ecosistemas de llanura. Ecología Austral, 29(3), 433–445. https://doi.org/10.25260/EA.19.29.3.0.896