Análisis regional de las islas de calor urbano en la Argentina

Autores/as

  • Paula Casadei Cátedra de Forrajicultura, Facultad de Agronomía, Universidad de Buenos Aires.
  • María Semmartin Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires. IFEVA - Universidad de Buenos Aires/CONICET. Ciudad Autónoma de Buenos Aires, Argentina.
  • Martín F. Garbulsky Cátedra de Forrajicultura, Facultad de Agronomía, Universidad de Buenos Aires. IFEVA - Universidad de Buenos Aires/CONICET. Ciudad Autónoma de Buenos Aires, Argentina.

DOI:

https://doi.org/10.25260/EA.21.31.1.0.970

Palabras clave:

ecología urbana, temperatura de superficie, NDVI, albedo, teledetección

Resumen

La urbanización es una de las formas más extremas de cambios en el uso de la tierra y tiene impactos sobre el clima, el agua y la biodiversidad en grandes áreas de todo el planeta. En este trabajo se cuantificaron las islas de calor urbano (ICU) y se relacionaron con características de las ciudades y su entorno a lo largo de gradientes ambientales de la Argentina. Analizamos 55 de las ciudades más grandes del país, ubicadas en 10 ecorregiones, mediante datos satelitales (MODIS) de temperatura de la superficie terrestre, albedo e índices de vegetación (NDVI), y de variables climáticas. La ICU diurna promedio anual de las ciudades argentinas para 2011-2015 fue 0.36±1.99 °C y la nocturna 1.68±0.61 °C. Los principales controles de la intensidad de la ICU fueron el NDVI rural, la precipitación media y la temperatura media durante el día y, en menor medida, la diferencia del albedo durante la noche. Durante el día, algunas ciudades se comportaron como islas de frío urbano (IFU) asociadas a climas áridos o a contextos agrícolas, mientras que durante la noche, todas las ciudades se comportaron como ICU. El efecto atemperador de la vegetación urbana se identificó a partir de la diferencia de NDVI urbano y rural, pero no se observó una relación directa negativa de ICU con NDVI urbano. Los resultados de este trabajo proveen nuevos conocimientos sobre los controles de las ICU y permitiría generar estrategias de desarrollo urbano para mitigar los efectos de la urbanización y mejorar la calidad de vida de la población urbana.

Citas

Angel, S., J. Parent, D. L. Civco, A. Blei, and D. Potere. 2011. The dimensions of global urban expansion: Estimates and projections for all countries, 2000-2050. Progress in Planning 75:53-107. https://doi.org/10.1016/j.progress.2011.04.001.

Bonet, J., S. Levy, M. Marcel, and A. M. Rosa. 2011. Sostenibilidad urbana en América Latina y el Caribe. Banco Interamericano de Desarrollo. 3-8. Acceso en noviembre 2015. URL: tinyurl.com/yc59kuv9.

Bounoua, L., A. Safia, J. Masek, C. Peters-Lidard, and M. L. Imhoff. 2009. Impact of urban growth on surface climate: A case study in Oran, Algeria. Journal of Applied Meteorology and Climatology. 48:217-231. https://doi.org/10.1175/2008JAMC2044.1.

Buyantuyev, A., and J. Wu. 2010. Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology 251:17-33. https://doi.org/10.1007/s10980-009-9402-4.

Correa, E., C. Rosa, and G. Lesino. 2006. Monitoreo de Clima Urbano: análisis estadístico de los factores que determinan la isla de calor y su aporte al diseño de los espacios urbanos. AVERMA Avances en Energías Renovables y Medio Ambiente 10:41-48.

de la Casa, A. C., and O. B. Nasello. 2014. Efectos del calentamiento global sobre el consumo de energía en la ciudad de Córdoba, Argentina. ANALES AFA 25:18-23. https://doi.org/10.31527/analesafa.2014.25.1.18.

Duval, V. S., G. M. Benedetti, and A. M. Campo. 2015. Relación clima-vegetación: adaptaciones de la comunidad del jarillal al clima semiárido, Parque Nacional Lihué Calel, provincia de La Pampa, Argentina. Investigaciones Geográficas 88:33-44. https://doi.org/10.14350/rig.48033.

Erell, E., and T. Williamson. 2007. Intra-urban differences in canopy layer air temperature at a mid-latitude city. International Journal of Climatology 27:1243-1255. https://doi.org/10.1002/joc.1469.

Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodríguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. E. Alsdorf. 2007. The shuttle radar topography mission. Reviews of Geophysics 45:RG2004. https://doi.org/10.1029/2005RG000183.

Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang. 2010. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment 114:168-182. https://doi.org/10.1016/j.rse.2009.08.016.

Garbulsky, M. F., J. Peñuelas, J. Gamon, Y. Inoue, and I. Filella. 2011. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies. A review and meta-analysis. Remote Sensing of Environment 115:281-297. https://doi.org/10.1016/j.rse.2010.08.023.

Garbulsky, M. F., I. Filella, A. Verger, and J. Peñuelas. 2014. Photosynthetic light use efficiency from satellite sensors: from global to Mediterranean vegetation. Environmental and Experimental Botany 103:3-11. https://doi.org/10.1016/j.envexpbot.2013.10.009.

Gioia, A., L. Paolini, A. Malizia, R. Oltra-Carrió, and J. A. Sobrino. 2014. Size matters: vegetation patch size and surface temperature relationship in foothills cities of northwestern Argentina. Urban Ecosystems 17:1161-1174. https://doi.org/10.1007/s11252-014-0372-1.

Grimm, N. B., D. Foster, P. Groffman, J. M. Grove, C. S. Hopkinson, K. J. Nadelhoffer, and D. P. Peters. 2008. The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Frontiers in Ecology and the Environment 6:264-272. https://doi.org/10.1890/070147.

Groffman, P. M., J. Cavender-Bares, N. D. Bettez, J. M. Grove, S. J. Hall, J. B. Heffernan, and K. Nelson. 2014. Ecological homogenization of urban USA. Frontiers in Ecology and the Environment 12:74-81. https://doi.org/10.1890/120374.

Hathway, E. A., and S. Sharples. 2012. The interaction of rivers and urban from in mitigating the urban heat island effect: a UK case study. Building and Environment 58:14-22. https://doi.org/10.1016/j.buildenv.2012.06.013.

Hung, T., D. Uchihama, S. Ochi, and Y. Yasuoka. 2006. Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation 8:34-48. https://doi.org/10.1016/j.jag.2005.05.003.

Imhoff, M. L., P. Zhang, R. E. Wolfe, and L. Bounoua. 2010. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment 114:504-513. https://doi.org/10.1016/j.rse.2009.10.008.

INDEC (Instituto Nacional de Estadística y Censos). 2010. Encuesta Permanente de Hogares - EPH Continua [Base de datos en línea], Acceso online diciembre 2020. URL: tinyurl.com/INDECcenso2010.

IGN, Instituto Geográfico Nacional de la República Argentina. 2017. Planta urbana. Acceso online diciembre 2019. URL: tinyurl.com/CapasSIG.

Jin, M., R. E. Dickinson, and D. A. Zhang. 2005. The footprint of urban areas on global climate as characterized by MODIS. Journal of Climate 18:1551-1565. https://doi.org/10.1175/JCLI3334.1.

Jenerette, G. D., S. L. Harlan, W. L. Stefanov, and C. A. Martin. 2011. Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA. Ecological Applications 21:2637-2651. https://doi.org/10.1890/10-1493.1.

Kato, S., T. Matsunaga, and Y. Yamaguchi. 2010. Influence of Shade on Surface Temperature in an Urban Area Estimated by ASTER Data. International Archives of the Photogammetry, Remote Sensing and Spatial Information Science, Kyoto Japan 38 (part 8).

Lazzarini, M., P. R. Marpu, and H. Ghedira. 2013. Temperature-land cover interactions: the inversion of urban heat island phenomenon in desert city areas. Remote Sensing of Environment 130:136-152. https://doi.org/10.1016/j.rse.2012.11.007.

Maristany, A., L. Abadía, S. Angiolini, A. Pacharoni, and M. Pardina. 2008. Estudio del fenómeno de la isla de calor en la ciudad de Córdoba-Resultados preliminares. Avances en Energías Renovables y Medio Ambiente 12:11-69.

McKinney, M. L. 2006. Urbanization as a major cause of biotic homogenization. Biological Conservation 127:247-260. https://doi.org/10.1016/j.biocon.2005.09.005.

Mills, G. 2007. Cities as agents of global change. International Journal of Climatology 27:1849-1857. https://doi.org/10.1002/joc.1604.

Naciones Unidas, Departamento de Asuntos Económicos y Sociales, División de Población 2018. World Urbanization Prospects: The 2018 Revision, Nueva York, Naciones Unidas. Último acceso: diciembre de 2018. URL: population.un.org/wup.

Nassar, A. K., G. A. Blackburn, and J. D. Whyatt. 2017. What controls the magnitude of the daytime heat sink in a desert city? Applied Geography 80:1-14. https://doi.org/10.1016/j.apgeog.2017.01.003.

Oke, T. R. 1973. City size and the urban heat island. Atmospheric Environment 7:769-779. https://doi.org/10.1016/0004-6981(73)90140-6.

Olson, D. M., E. Dinerstein, E. Wikramanayake, N. D. Burgess, G. Powell, E. C. Underwood, J. A. D'amico, I. Itoua, H. E. Strand, J. C. Morrison, C. J. Loucks, T. F. Allnutt, T. H. Ricketts, Y. Kura, J. F. Lamoreux, W. W. Wettengel, P. Hedao, and K. R. Kassem. 2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51:933-938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.

Paolini, L. 2012. Análisis de la respuesta de la temperatura de superficie al crecimiento urbano utilizando series temporales MODIS. Revista de Teledetección 38:19-26.

Peng, S., S. Piao, P. Ciais, P. Friedlingstein, C. Ottle, F. M. Bréon, and R. B. Myneni. 2012. Surface urban heat island across 419 global big cities. Environmental Science and Technology 46:696-703. https://doi.org/10.1021/es2030438.

Peña, M. A. 2008. Relationships between remotely sensed surface parameters associated with the urban heat sink formation in Santiago, Chile. International Journal of Remote Sensing 29:4385-4404. https://doi.org/10.1080/01431160801908137.

Pettorelli, N., J. O. Vik, A. Mysterud, J. M. Gaillard, C. J. Tucker, and N. C. Stenseth. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution 20:503-510. https://doi.org/10.1016/j.tree.2005.05.011.

Porteous, A. 2013. Dictionary of environmental science and technology. Fourth edition. John Wiley and Sons, Chichester, West Sussex, England.

Pretzsch, H., P. Biber, E. Uhl, J. Dahlhausen, G. Schütze, D. Perkins, T. Rötzer, J. Caldentey, T. Koike, T. van Con, A. Chavanne, B. du Toit, K. Foster, and Lefer B. 2017. Climate change accelerates growth of urban trees in metropolises worldwide. Scientific Reports 7:15403. https://doi.org/10.1038/s41598-017-14831-w.

Rizwan, A. M., L. Y. Dennis, and L. I. U. Chunho. 2008. A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences 20:120-128. https://doi.org/10.1016/S1001-0742(08)60019-4.

Roth, M. 2007. Review of urban climate research in (sub) tropical regions. International Journal of Climatology 27:1859-1873. https://doi.org/10.1002/joc.1591.

Roth, M., T. R. Oke, and W. J. Emery. 1989. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. International Journal of Remote Sensing 10:1699-1720. https://doi.org/10.1080/01431168908904002.

Schwarz, N., S. Lautenbach, and R. Seppelt. 2011. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sensing of Environment 115:3175-3186. https://doi.org/10.1016/j.rse.2011.07.003.

Shi, Y., and Y. Zhang. 2017. Remote sensing retrieval of urban land surface temperature in hot-humid region. Urban Climate 24:299-310. https://doi.org/10.1016/j.uclim.2017.01.001.

Streutker, D. R. 2002. A remote sensing study of the urban heat island of Houston, Texas. International Journal of Remote Sensing 23:2595-2608. https://doi.org/10.1080/01431160110115023.

Taheri Shahraiyni, H., S. Sodoudi, A. El-Zafarany, T. Abou El Seoud, H. Ashraf, and K. Krone. 2016. A Comprehensive Statistical Study on Daytime Surface Urban Heat Island during summer in Urban Areas, Case Study: Cairo and Its New Towns. Remote Sensing 8:643. https://doi.org/10.3390/rs8080643.

Verón, E. M. 2010. Estimación de la isla de calor en Santa Teresita, Partido de la Costa, Provincia de Buenos Aires, Argentina. Revista Geográfica de América Central 45:129-148.

Walker, J. J., K. M. de Beurs, and G. M. Henebry. 2015. Land surface phenology along urban to rural gradients in the US Great Plains. Remote Sensing of Environment 165:42-52. https://doi.org/10.1016/j.rse.2015.04.019.

Wan, Z. 2006. MODIS land surface temperature products users’ guide. Institute for Computational Earth System Science, University of California, Santa Barbara, USA.

Wan, Z., S. Hook, G. Hulley. 2015. MYD11A2 MODIS/Aqua Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. Último acceso: 3 de marzo 2021: https://doi.org/10.5067/MODIS/MYD11A2.006.

Wong, K., A. Paddon, and A. Jimenez. 2013. Review of world urban heat islands: Many linked to increased mortality. Journal of Energy Resources Technology 135:1-11. https://doi.org/10.1115/1.4023176.

Yao, R., L. Wang, X. Huang, Z. Niu, F. Liu, and Q. Wang. 2017. Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. Science of the Total Environment 609:742-754. https://doi.org/10.1016/j.scitotenv.2017.07.217.

Zhao, L., X. Lee, R. B. Smith, and K. Oleson. 2014. Strong contributions of local background climate to urban heat islands. Nature 511:216-219. https://doi.org/10.1038/nature13462.

Zhou, W., Y. Qian, X. Li, W. Li, and L. Han. 2014a. Relationships between land cover and the surface urban heat island: seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landscape Ecology 29:153-167. https://doi.org/10.1007/s10980-013-9950-5.

Zhou, D., S. Zhao, S. Liu, L. Zhang, and C. Zhu. 2014b. Surface urban heat island in China's 32 major cities: spatial patterns and drivers. Remote Sensing Environment 152:51-61. https://doi.org/10.1016/j.rse.2014.05.017.

Zhou, D., L. Zhang, D. Li, D. Huang, and C. Zhu. 2016. Climate-vegetation control on the diurnal and seasonal variations of surface urban heat islands in China. Environmental Research Letters 11:074009. https://doi.org/10.1088/1748-9326/11/7/074009.

Zhou, B., D. Rybski, and J. P. Kropp. 2017. The role of city size and urban form in the surface urban heat island. Scientific Reports 7:4791. https://doi.org/10.1038/s41598-017-04242-2.

Análisis regional de las islas de calor urbano en la Argentina

Descargas

Archivos adicionales

Publicado

2021-03-21

Cómo citar

Casadei, P., Semmartin, M., & Garbulsky, M. F. (2021). Análisis regional de las islas de calor urbano en la Argentina. Ecología Austral, 31(1), 190–203. https://doi.org/10.25260/EA.21.31.1.0.970