¿Existe en América del Sur una brecha de consenso sobre el cambio climático? Evidencia a partir del análisis de percepción en redes sociales

  • Fernando A. I. González Instituto de Investigaciones Económicas y Sociales del Sur.
Palabras clave: Twitter, opinión pública, ambiente, algoritmos de clasificación


Este trabajo indaga acerca de la posible existencia de una brecha de consenso entre la evidencia científica y la percepción pública mayoritaria, en relación con el cambio climático en América del Sur. Se utilizaron técnicas de minería de texto para extraer datos de la red social Twitter, georreferenciados en América del Sur, durante septiembre y octubre de 2019. El texto seleccionado fue clasificado a partir de dos clasificadores: el clasificador bayesiano ingenuo y el de máquinas de soporte vectorial. Ambos algoritmos presentaron tasas de precisión elevadas (>80%). Los resultados sugieren que en la actualidad no existe brecha de consenso para el caso de América del Sur. Esta brecha parece estar restringida a países como Estados Unidos. En América del Sur, entre el 86% y 95% de todos los tweets se clasificó como positivo, es decir, que cree que el cambio climático es real.


Abbasi, A., H. Chen, and A. Salem. 2008. Sentiment Analysis in Multiple Languages: Feature Selection for Opinion Classification in Web Forums. ACM Trans. on Information Systems 26(3):1-34. https://doi.org/10.1145/1361684.1361685. https://doi.org/10.1145/1344411.1344413.

Allisio, L., V. Mussa, C. Bosco, V. Patti, and G. Ruffo. 2013. Felicittà: Visualizing and Estimating Happiness in Italian Cities from Geotagged Tweets. Working paper presented at 1st International Workshop on Emotion and Sentiment in Social and Expressive Media: Approaches and Perspectives from AI. URL: http://ceur-ws.org/Vol-1096/paper8.pdf

An, X., A. R. Ganguly, Y. Fang, S. B. Scyphers, A. M. Hunter, and J. G. Dy. 2014. Tracking climate change opinions from twitter data. Working paper presented at Workshop on Data Science for Social Good. URL: https://tinyurl.com/y7umehu8.

Bayes, T. 1763. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. Philosophical Transactions Royal Society 53. https://doi.org/10.1098/rstl.1763.0053.

Bermingham, A., and A. Smeaton. 2010. Classifying Sentiment in Microblogs: Is Brevity an Advantage? Proc. of ACM CIKM Conf. Pp. 1833-1836. URL: https://core.ac.uk/download/pdf/147599841.pdf

Boser, B. E., I. M. Guyon, and V. N. Vapnik. 1992. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the 5th Annual Workshop on Computational Learning Theory (COLT’92). Pp. 144-152. https://doi.org/10.1145/130385.130401.

Boussalis, C., and T. G. Coan. 2015. Text-mining the signals of climate change doubt. Global Environmental Change 36:89-100. https://doi.org/10.1016/j.gloenvcha.2015.12.001.

Campbell, T. H., and A. C. Kay. 2014. Solution aversion: on the relation between ideology and motivated disbelief. Journal of Personality and Social Psichology 107(5):809-824. https://doi.org/10.1037/a0037963.

Carlton, J. S., R. Perry-Hill, M. Huber, and L. S. Prokopy. 2015. The climate change consensus extends beyond climate scientists. Environmental Research Letters 10(9):1-12. https://doi.org/10.1088/1748-9326/10/9/094025.

Cody, E. M., A. J. Reagan, L. Mitchell, P. S. Dodds, and C. M. Danforth. 2015. Climate change sentiment on twitter: An unsolicited public opinion poll. PloS one 10(8). https://doi.org/10.1371/journal.pone.0136092.

Cook, J. 2019. Understanding and countering misinformation about climate change. Pp. 281-306 in I. Chiluwa and S. Samoilenko (eds.). Handbook of Research on Deception, Fake News, and Misinformation Online. IGI-Global: Hershey.

Cook, J., D. Nuccitelli, S. A. Green, M. Richardson, B. Winkler, R. Painting, R. Way, P. Jacobs, and A. Skuce. 2013. Quatifying the consensus on anthropogenic global warning in the scientific literature. Environmental Research Letters 8(2):1-8. https://doi.org/10.1088/1748-9326/8/2/024024.

Dahal, B., S. A. P. Kumar, and Z. Li. 2019. Topic modelling and sentiment analysis of global climate change tweets. Social Network Analysis and Mining 9(24):1-20. https://doi.org/10.1007/s13278-019-0568-8.

Doran, P. T., and M. Kendall Zimmerman. 2009. Examining the scientific consensus on climate change. Eos, Transactions, American Geophysical Union 90(3). https://doi.org/10.1029/2009EO030002.

Dunlap, R. E., and L. Saad. 2001. Only one in four americans are anxious about the environment. Encuesta Gallup. URL: https://tinyurl.com/ydafmjuj.

Holmberg, K., and I. Hellsten. 2015. Gender differences in the climate change communication on Twitter. Internet Research 25(5):811-828. https://doi.org/10.1108/IntR-07-2014-0179.

IPCC. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. URL: https://www.ipcc.ch/report/ar5/wg2/.

IPCC. 2018. Impacts of 1.5 °C Global Warming on Natural and Human Systems. In V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, et al. (eds.). Global Warming of 1.5 °C. URL: https://www.ipcc.ch/sr15/.

Jang, S. M., and P. S. Hart. 2015. Polarized frames on climate change and global warming across countries and states: Evidence from twitter big data. Global Environmental Change 32:11-17. https://doi.org/10.1016/j.gloenvcha.2015.02.010.

Jansen, B. J., M. Zang, K. Sobel, and A. Chowdury. 2009. Twitter power: tweets as electronic word in mouth. Journal of the American Society for Information Science and Technology 60(11):2169-2188. https://doi.org/10.1002/asi.21149.

Johnson, D., and S. Levin. 2009. The tragedy of cognition: psychological biases and environmental inaction. Currently Science 97(11):1593-1603.

Kirilenko, A., and S. Stepchenkova. 2014. Public microblogging on climate change: one year of Twitter worldwide. Global Environmental Change 26:171-182. https://doi.org/10.1016/j.gloenvcha.2014.02.008.

Leas, E. C., B. M. Althouse, M. Dredze, N. Obradovich, J. H. Fowler, S. M. Noar, J. Allem, and J. W. Ayers. 2016. Big Data Sensors of Organic Advocacy: The Case of Leonardo DiCaprio and Climate Change. PLoS ONE 11(8):1-9. https://doi.org/10.1371/journal.pone.0159885.

Leiserowitz, A. A. 2005. American risk perceptions: is climate change dangerous? Risk Analysis 25(6):1433-1442. https://doi.org/10.1111/j.1540-6261.2005.00690.x.

Leiserowitz, A. A., E. Maibach, C. Roser-Renouf, G. Feinberg, and P. Howe. 2013. Climate change in the American mind: Americans’ global warming beliefs and attitudes in April, 2013. Yale University and George Mason University New Haven, CT: Yale Project on Climate Change Communication. https://doi.org/10.2139/ssrn.2298705.

Mellon, J., and C. Prosser. 2017. Twitter and Facebook are not representative of the general population: political attitudes and demographics of British social media users. Research and Politics, 4(3):1-9. https://doi.org/10.1177/2053168017720008.

Mucha, N. 2017. Sentiment analysis of global warming using twitter data. Master thesis in Computer Science, North Dakota University. URL: https://tinyurl.com/yba8j79x.

Omnicore Agency. 2019. Twytter by the numbers 2018: stats, demographics and fun facts. URL: https://www.omnicoreagency.com/twitter-statistics/.

Oreskes, N. 2004. Beyond the ivory tower: The scientific consensus on climate change. Science 306:1686-1686. https://doi.org/10.1126/science.1103618.

Ortigosa, A., J. M. Martin, and R. M. Carro. 2014. Sentiment Analysis in Facebook and its Application to ELearning. Computers in Human Behavior 31:527-541. https://doi.org/10.1016/j.chb.2013.05.024.

Pew Research Center for the People and the Press. 2013. Public priorities: deficit rising, terrorism slipping. Informe URL: https://tinyurl.com/y9qmdxce.

Pew Research Center for the People and the Press. 2019. Sizing up Twitter users. URL: https://tinyurl.com/v3233b9.

Rahman, M. M. 2012. Mining social data to extract intellectual knowledge. arXiv preprint arXiv:1209.5345. https://doi.org/10.5815/ijisa.2012.10.02.

Reusswig, F. 2013. HIstory and future of the scientific consensus on anthropogenic global warning. Environmental Research Letters 8:1-4. https://doi.org/10.1088/1748-9326/8/3/031003.

Rui, H., Y. Liu, and A. Whinston. 2013. Whose and What Chatter Matters? The Effect of Tweets on Movie Sales. Decision Support Systems 55(4):863-870. https://doi.org/10.1016/j.dss.2012.12.022.

Taj, S., A. Meghji, and B. B. Shaikh. 2019. Sentiment analysis of news articles: a lexicon-based approach. Working paper presented in 2nd International Conference on Computing Mathematics and Engineering Technologies. https://doi.org/10.1109/ICOMET.2019.8673428.

Tschotschel, R., A. Schuck, and A. Wonneberger. 2020. Patterns of controversy and consensus in German, Canadian and US online news on climate change. Global Environmental Change 60:1-12. https://doi.org/10.1016/j.gloenvcha.2019.101957.

Yang, W., L. Mu, and Y. Shen. 2015. Effect of climate and seasonality on depressed mood among twitter users. Applied Geography 63:184-191. https://doi.org/10.1016/j.apgeog.2015.06.017.

Zagibalov, T., and J. Carroll. 2008. Unsupervised classification of sentiment and objectivity in Chinese text. Working paper presented at the Third International Joint Conference on Natural Language Processing: Volume-I. URL: https://www.aclweb.org/anthology/I08-1040/.

¿Existe en América del Sur una brecha de consenso sobre el cambio climático? Evidencia a partir del análisis de percepción en redes sociales