Recolonización de algas tras una sequía extraordinaria en arroyos permanentes de llanura

Autores/as

  • María M. Nicolosi Gelis Instituto de Limnología ‘Dr. Raúl A. Ringuelet’, UNLP-CONICET (CCT La Plata). La Plata, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Joaquín Cochero Instituto de Limnología ‘Dr. Raúl A. Ringuelet’, UNLP-CONICET (CCT La Plata). La Plata, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Delia E. Bauer Instituto de Limnología ‘Dr. Raúl A. Ringuelet’, UNLP-CONICET (CCT La Plata). La Plata, Argentina. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Argentina
  • Nora Gómez Instituto de Limnología ‘Dr. Raúl A. Ringuelet’, UNLP-CONICET (CCT La Plata). La Plata, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

DOI:

https://doi.org/10.25260/EA.23.33.1.0.1999

Palabras clave:

microalgas bentónicas, biofilm, disturbio, pérdida del caudal, arroyos templados

Resumen

Las sequías reducen el hábitat y fragmentan la continuidad de los sistemas lóticos, produciendo efectos duraderos en la biota de los sedimentos y afectando densidad y biomasa de algas. Al producirse sequías, la supervivencia de algas y cianobacterias del biofilm depende de diferentes alternativas para superar el estrés. En los arroyos pampeanos, los periodos de interrupción o bajo caudal que estresan el biofilm pueden relacionarse con el fenómeno de El Niño/Oscilación del Sur y con la gestión del agua (e.g., riego/extracción), que reducen los caudales base, disminuyen el área húmeda y secan el lecho del arroyo. El objetivo de este estudio fue determinar la respuesta de las algas epipélicas a la desecación, analizadas por grandes grupos algales (Cianobacterias, Dinoflagelados, Algas verdes, Diatomeas) en arroyos sin períodos frecuentes de sequía. Primero, estudiamos la distribución vertical de las algas en el sedimento del arroyo como estrategia de refugio durante el período de sequía, junto con la variación de la humedad del sedimento, en corers de sedimento de 10 cm divididos en seis segmentos a las profundidades 0-1 cm (superior), 1-2 cm, 2-3 cm, 3-4 cm, 4-5 cm y 5-10 cm. Segundo, analizamos los patrones de recolonización del ensamble de algas epipélicas tras la sequía, estudiando la sucesión de organismos autótrofos para comprender el papel de los sedimentos fluviales como fuente de poblaciones de algas. Para esto, corers de sedimento de 2 cm de profundidad fueron colocados en microcosmos con agua y estudiados durante 2 semanas. Nuestros resultados indicaron que cuando una sequía severa afecta a los arroyos, algas y cianobacterias sobreviven, pudiendo relacionarse con el contenido de humedad del sedimento. Además, tras la hidratación del sedimento, la comunidad autotrófica aumentó rápidamente su densidad. Las cianobacterias fueron el grupo más resistente a la desecación y el que más rápido reaccionó a la hidratación.

Citas

Acuña, V., C. Vilches, and A. Giorgi. 2011. As productive and slow as a stream can be the metabolism of a Pampean stream. Journal of the North American Benthological Society 30:71-83. https://doi.org/10.1899/09-082.1.

Altieri, P. D. 2022. Estudio de las tramas tróficas de macroinvertebrados en bañados de desborde fluvial del área pampeana con diferentes usos del suelo. PhD Thesis. Doctora en Ciencias Naturales. Universidad Nacional de La Plata. Argentina. In press.

APHA/AWWA. 2012. Standard Methods for the Examination of Water and Wastewater. ISBN 978-087553-013-0.

Benenati, P. L., J. P. Shannon, and D. W. Blinn. 1998. Desiccation and recolonization of phytobenthos in a regulated desert river: Colorado River at Lees Ferry, Arizona, USA. Regulated Rivers: Research and Management 14(6):519-532. https://doi.org/10.1002/(SICI)1099-1646(1998110)14:6<519::AID-RRR518>3.0.CO;2-H.

Bogan, M. T., E. T. Chester, T. Datry, A. L. Murphy, B. J. Robson, A. Ruhi, R. Stubbington, and J. E. Whitney. 2017. Resistance, Resilience, and Community Recovery in Intermittent Rivers and Ephemeral Streams. Pp. 349-376 in T. Datry, N. Bonada and A. Boulton (eds.). Intermittent Rivers and Ephemeral Streams. Elsevier. https://doi.org/10.1016/B978-0-12-803835-2.00013-9.

Chester, E. T., and B. J. Robson. 2014. Do recolonisation processes in intermittent streams have sustained effects on benthic algal density and assemblage composition? Marine and Freshwater Research 65:784. https://doi.org/10.1071/MF13239.

Cochero, J., M. Licursi, and N. Gómez. 2015. Changes in the epipelic diatom assemblage in nutrient rich streams due to the variations of simultaneous stressors. Limnologica 51:15-23. https://doi.org/10.1016/j.limno.2014.10.004.

Cochero, J., M. M. Nicolosi Gelis, M. B. Sathicq, and N. Gómez. 2018. Biofilm early stage development in two nutrient-rich streams with different urban impacts: Biofilm development in urban streams. River Research and Applications 34:755-764. https://doi.org/10.1002/rra.3290.

Cochero, J., A. Romaní, and N. Gómez. 2013. Delayed response of microbial epipelic biofilm to nutrient addition in a Pampean stream. Aquatic Microbial Ecology 69:145-155. https://doi.org/10.3354/ame01630.

Cochran, W. G. 1951. Testing a Linear Relation among Variances. Biometrics 7:17-32. https://doi.org/10.2307/3001601.

Cohen, J. 2013. Statistical Power Analysis for the Behavioral Sciences. Second edition. Routledge, New York. https://doi.org/10.4324/9780203771587.

Consalvey, M., B. Jesus, R. G. Perkins, V. Brotas, G. J. C. Underwood, and D. M. Paterson. 2004. Monitoring Migration and Measuring Biomass in Benthic Biofilms: The Effects of Dark/far-red Adaptation and Vertical Migration on Fluorescence Measurements. Photosynthesis Research 81:91-101. https://doi.org/10.1023/B:PRES.0000028397.86495.b5.

Davis, J. S. 1972. Survival records in the algae, and the survival role of certain algal pigments, fat, and mucilaginous substances. Biologist 54:52-93.

Extence, C. A., D. M. Balbi, and R. P. Chadd. 1999. River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectives. Regulated Rivers: Research and Management 15:545-574. https://doi.org/10.1002/(SICI)1099-1646(199911/12)15:6<545::AID-RRR561>3.0.CO;2-W.

Fazi, S., S. Amalfitano, C. Piccini, A. Zoppini, A. Puddu, and J. Pernthaler. 2008. Colonization of overlaying water by bacteria from dry river sediments: Bacterial colonization of overlaying water. Environmental Microbiology 10:2760-2772. https://doi.org/10.1111/j.1462-2920.2008.01695.x.

Giorgi, A. D. N. 1998. PhD Thesis. Factores reguladores del fitobentos de arroyos de llanura. Doctor en Ciencias Naturales. Universidad Nacional de Luján. Argentina. URL: sedici.unlp.edu.ar/handle/10915/4634.

Giorgi, A., C. Feijoó, and G. Tell. 2005. Primary producers in a Pampean stream: temporal variation and structuring role. Biodiversity and Conservation 14:1699-1718. https://doi.org/10.1007/s10531-004-0694-z.

Gómez, N., and M. Licursi. 2001. The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology 35:173-181. https://doi.org/10.1023/A:1011415209445.

Gómez, N., A. Siri, L. R. Capítulo, D. C. Colautti, L. Alcalde, A. R. Capítulo, M. Donato, M. Fernanda Álvarez, J. R. G. de Souza, R. F. Jensen, D. E. Bauer, M. Maroñas, J. M. Paredes del Puerto, P. Altieri, L. C. Armendáriz, H. H. Benitez, M. J. Cassano, B. Cortese, H. D. Di Giorgi, J. L. Donadelli, M. M. Nicolosi Gelis, I. D. García, T. Maiztegui, A. H. Paracampo, R. M. Sánchez, M. B. Sathicq, and L. N. S. R. Catanzaro. 2022. Effects of urban demand for food and water on physicochemicals and biotic structure of riverine wetlands in the Pampean plain. Ecohydrology and Hydrobiology 22:355-369. https://doi.org/10.1016/j.ecohyd.2021.08.006.

Gottlieb, A., J. Richards, and E. Gaiser. 2005. Effects of desiccation duration on the community structure and nutrient retention of short and long-hydroperiod Everglades periphyton mats. Aquatic Botany 82:99-112. https://doi.org/10.1016/j.aquabot.2005.02.012.

Happey-Wood, C. M. 1988. Vertical-migration patterns of flagellates in a community of freshwater benthic algae. Hydrobiologia 161:99-123. https://doi.org/10.1007/BF00044104.

Hasler, P., J. Stepankova, J. Spackova, J. Neustupa, M. Kitner, P. Hekera, J. Vesela, J. Burian, and A. Poulickova. 2008. Epipelic cyanobacteria and algae: a case study from Czech ponds. Fottea 8:133-146. https://doi.org/10.5507/fot.2008.012.

Karsten, U., and A. Holzinger. 2014. Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration. Biodiversity and Conservation 23:1845-1858. https://doi.org/10.1007/s10531-014-0653-2.

Lake, P. S. 2003. Ecological effects of perturbation by drought in flowing water. Freshw Biol 48(7):1161-1172. https://doi.org/10.1046/j.1365-2427.2003.01086.x.

Larson, C. A., and S. I. Passy. 2012. Taxonomic and functional composition of the algal benthos exhibits similar successional trends in response to nutrient supply and current velocity. FEMS Microbiology Ecology 80:352-362. https://doi.org/10.1111/j.1574-6941.2012.01302.x.

Ledger, M. E., R. M. L. Harris, P. D. Armitage, and A. M. Milner. 2008. Disturbance frequency influences patch dynamics in stream benthic algal communities. Oecologia 155:809-819. https://doi.org/10.1007/s00442-007-0950-5.

Lukács, Á., I. Bácsi, Z. Nemes‐Kókai, G. Borics, G. Várbíró, E. T‐Krasznai, and V. B‐Béres. 2021. Strong influence of climatic extremes on diversity of benthic algae and cyanobacteria in a lowland intermittent stream. Ecohydrology 14(4):e2286. https://doi.org/10.1002/eco.2286.

Mac Loughlin, T. M., L. Peluso, and D. J. G. Marino. 2017. Pesticide impact study in the peri-urban horticultural area of Gran La Plata, Argentina. Science of The Total Environment 598:572-580. https://doi.org/10.1016/j.scitotenv.2017.04.116.

Martínez, D. E., and M. Osterrieth. 1999. Geoquímica de la sílice disuelta en el Acuífero Pampeano en la Vertiente Sudoriental de Tandilia. Hidrología Subterránea 13:241-250.

McKew, B. A., J. D. Taylor, T. J. McGenity, and G. J. C. Underwood. 2011. Resistance and resilience of benthic biofilm communities from a temperate saltmarsh to desiccation and rewetting. The ISME Journal 5:30-41. https://doi.org/10.1038/ismej.2010.91.

Mosisch, T. D. 2001. Effects of desiccation on stream epilithic algae. New Zealand Journal of Marine and Freshwater Research 35:173-179. https://doi.org/10.1080/00288330.2001.9516987.

Nejadsattari, T. 1992. Patterns of epipelic diatoms and oxygen distributions in stream sediments - ProQuest. Iowa State University.

Nicolosi Gelis, M. M. 2021. PhD Thesis. Las diatomeas del biofilm fluvial como indicadores ambientales a corto plazo en el seguimiento de la recuperación de la calidad del agua de sistemas acuáticos pampeanos. Doctora en Ciencias Naturales, Universidad Nacional de La Plata. Argentina. https://doi.org/10.35537/10915/114100.

Nicolosi Gelis, M. M., J. Cochero, M. B. Sathicq, and N. Gómez. 2020. Effect of pollution on early diatom colonisation on artificial substrata in urban lowland streams. Marine and Freshwater Research 72:365. https://doi.org/10.1071/MF19293.

Overpeck, J. T., and J. E. Cole. 2006. Abrupt Change in Earth’s Climate System. Annual Review of Environment and Resources 31:1-31. https://doi.org/10.1146/annurev.energy.30.050504.144308.

Pérez, G. L., A. Torremorell, H. Mugni, P. Rodríguez, M. S. Vera, M. D. Nascimento, L. Allende, J. Bustingorry, R. Escaray, M. Ferraro, I. Izaguirre, H. Pizarro, C. Bonetto, D. P. Morris, and H. Zagarese. 2007. Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study. Ecological Applications 17(8):2310-2322. https://doi.org/10.1890/07-0499.1.

Peterson, C. G. 1996. Mechanisms of Lotic Microalgal Colonization Following Space-Clearing Disturbances Acting at Different Spatial Scales. Oikos 77:417. https://doi.org/10.2307/3545932.

Peterson, C. G., and A. J. Boulton. 1999. Stream permanence influences microalgal food availability to grazing tadpoles in arid-zone springs. Oecologia 118:340-352. https://doi.org/10.1007/s004420050735.

Pfister, L., C. E. Wetzel, J. Klaus, N. Martínez‐Carreras, M. Antonelli, A. J. Teuling, and J. J. McDonnell. 2017. Terrestrial diatoms as tracers in catchment hydrology: a review. WIREs Water 4. https://doi.org/10.1002/wat2.1241.

Revsbech, N. P., and B. B. Jorgensen. 1983. Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: Capabilities and limitations of the method1. Limnology and Oceanography 28:749-756. https://doi.org/10.4319/lo.1983.28.4.0749.

Robson, B. J. 2000. Role of residual biofilm in the recolonization of rocky intermittent streams by benthic algae. Marine and Freshwater Research 51:725. https://doi.org/10.1071/MF00012.

Robson, B. J., and T. G. Matthews. 2004. Drought refuges affect algal recolonization in intermittent streams. River Research and Applications 20:753-763. https://doi.org/10.1002/rra.789.

Robson, B. J., T. G. Matthews, P. R. Lind, and N. A. Thomas. 2008. Pathways for algal recolonization in seasonally-flowing streams. Freshwater Biology 53:2385-2401. https://doi.org/10.1111/j.1365-2427.2008.02061.x.

Rodrigues Capítulo, A., N. Gómez, A. Giorgi, and C. Feijoo. 2010. Global changes in pampean lowland streams (Argentina): implications for biodiversity and functioning. Pp. 18 in R. J. Stevenson and S. Sabater (eds.). Global Change and River Ecosystems - Implications for Structure, Function and Ecosystem Services. Developments in Hydrobiology 215, vol 215. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0608-8_5.

Round, F. E. 1981. The Ecology of Algae. Cambridge University Press. https://doi.org/10.1017/S0025315400057507.

Round, F. E., and J. W. Eaton. 1966. Persistent, Vertical-Migration Rhythms in Benthic Microflora: III. The Rhythm of Epipelic Algae in a Freshwater Pond. Journal of Ecology 54(3):609-615. https://doi.org/10.2307/2257806.

Sabater, S., H. Guasch, A. Romaní, and I. Muñoz. 2000. Stromatolitic communities in Mediterranean streams: adaptations to a changing environment. Biodiversity and Conservation 9:379-392. https://doi.org/10.1023/A:1008954801397.

Sabater, S., X. Timoner, G. Bornette, M. De Wilde, J. C. Stromberg, and J. C. Stella. 2017. The Biota of Intermittent Rivers and Ephemeral Streams: Algae and Vascular Plants. Pp. 189-216 in T. Datry, N. Bonada and A. Boulton (eds.). Intermittent Rivers and Ephemeral Streams. Academic Press. https://doi.org/10.1016/B978-0-12-803835-2.00016-4.

Sabater, S., X. Timoner, C. Borrego, and V. Acuña. 2016. Stream Biofilm Responses to Flow Intermittency: From Cells to Ecosystems. Frontiers in Environmental Science 4. https://doi.org/10.3389/fenvs.2016.00014.

Shapiro, S. S., and M. B. Wilk. 1965. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 52:591-611. https://doi.org/10.2307/2333709.

Sierra, M. V., and N. Gómez. 2007. Structural Characteristics and Oxygen Consumption of the Epipelic Biofilm in Three Lowland Streams Exposed to Different Land Uses. Water, Air, and Soil Pollution 186:115-127. https://doi.org/10.1007/s11270-007-9469-y.

Sierra, M. V., N. Gómez, A. V. Marano, and M. A. Di Siervi. 2013. Caracterización funcional y estructural del biofilm epipélico en relación al aumento de la urbanización en un arroyo de la Llanura Pampeana (Argentina). Ecología Austral 23:108-118. https://doi.org/10.25260/EA.13.23.2.0.1166.

Solari, L. C., and M. C. Claps. 1996. Planktonic and benthic algae of a pampean river (Argentina) : comparative analysis. Annales de Limnologie - International Journal of Limnology 32:89-95. https://doi.org/10.1051/limn/1996011.

Solari, L. C., K. P. Quaini, and N. A. Gabellone. 2018. Succession of microconsumers in waterlogged pampean soils (Buenos Aires, Argentina) and its significance for nearby wetlands. Aquatic Sciences 80:42. https://doi.org/10.1007/s00027-018-0593-0.

Stromberg, J. C., K. J. Bagstad, J. M. Leenhouts, S. J. Lite, and E. Makings. 2005. Effects of stream flow intermittency on riparian vegetation of a semiarid region river (San Pedro River, Arizona). River Research and Applications 21:925-938. https://doi.org/10.1002/rra.858.

Timoner, X., V. Acuña, L. Frampton, P. Pollard, S. Sabater, and S. E. Bunn. 2014. Biofilm functional responses to the rehydration of a dry intermittent stream. Hydrobiologia 727:185-195. https://doi.org/10.1007/s10750-013-1802-4.

Timoner, X., M. Colls, S. M. Salomón, F. Oliva, V. Acuña, and S. Sabater. 2020. Does biofilm origin matter? Biofilm responses to non-flow period in permanent and temporary streams. Freshwater Biology 65:514-523. https://doi.org/10.1111/fwb.13447.

Vilches, C., and A. Giorgi. 2010. Metabolism in a macrophyte-rich stream exposed to flooding. Hydrobiologia 654:57-65. https://doi.org/10.1007/s10750-010-0368-7.

Vilches, C., A. Giorgi, and M. Casco. 2013. Periphyton responses to non-point pollution in naturally eutrophic conditions in Pampean streams. Fundamental and Applied Limnology / Archiv für Hydrobiologie 183:63-74. https://doi.org/10.1127/1863-9135/2013/0415.

Zaplara, V. S., L. C. Solari, H. H. Benítez, and N. A. Gabellone. 2018. Microorganismos consumidores en suelos de la llanura de inundación del arroyo El Pescado (Buenos Aires): Experiencia en microcosmos. Revista del Museo Argentino de Ciencias Naturales 12. https://doi.org/10.22179/REVMACN.20.605.

Recolonización de algas tras una sequía extraordinaria en arroyos permanentes de llanura

Descargas

Publicado

2023-01-25

Cómo citar

Nicolosi Gelis, M. M., Cochero, J., Bauer, D. E., & Gómez, N. (2023). Recolonización de algas tras una sequía extraordinaria en arroyos permanentes de llanura. Ecología Austral, 33(1), 060–073. https://doi.org/10.25260/EA.23.33.1.0.1999