Algal recolonization following an extraordinary drought in permanent lowland streams

Authors

  • María M. Nicolosi Gelis Instituto de Limnología ‘Dr. Raúl A. Ringuelet’, UNLP-CONICET (CCT La Plata). La Plata, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Joaquín Cochero Instituto de Limnología ‘Dr. Raúl A. Ringuelet’, UNLP-CONICET (CCT La Plata). La Plata, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Delia E. Bauer Instituto de Limnología ‘Dr. Raúl A. Ringuelet’, UNLP-CONICET (CCT La Plata). La Plata, Argentina. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Argentina
  • Nora Gómez Instituto de Limnología ‘Dr. Raúl A. Ringuelet’, UNLP-CONICET (CCT La Plata). La Plata, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

DOI:

https://doi.org/10.25260/EA.23.33.1.0.1999

Keywords:

benthic microalgae, biofilm, disturbance, flow loss, temperate stream

Abstract

Droughts reduce habitat and fragment the continuity of running water systems producing lasting effects on sediment biota and affecting density and biomass of algae. When droughts occur, the survival of algae and cyanobacteria of the biofilm depends on different alternatives to overcome the stress. In Pampean streams, periods of low flow causing desiccation stress in the biofilm may be linked to El Niño/Southern Oscillation phenomenon, and to water management practices (irrigation and extraction), that can reduce stream base flows for prolonged periods, reducing wetted area and dewatering the stream bed. The aim of this study was to determine the response of epipelic algae (analyzed by greater algal groups Cyanobacteria, Euglenophyta, Dinoflagellates, Green Algae, Diatoms) to desiccation as a disturbance, in streams without frequent periods of drought. First, we studied the in situ vertical distribution of epipelic algae in stream sediment during the drought period as a refuge strategy, along with the vertical distribution of sediment humidity in 10 cm sediment corers divided in 6 segments at depths 0-1 cm (uppermost layer), 1-2 cm, 2-3 cm, 3-4 cm, 4-5 cm and 5-10 cm. Secondly, we analyzed the recolonization patterns of the epipelic algal assemblage after the drought by studying the succession of autotrophic organisms, in order to better understand the role of sediments as a source of algae populations. For this, 2 cm deep corers were placed with water in microcosms and monitored during 2 weeks. Our results indicate that when the streams are affected by a severe drought, algae and cyanobacteria survive; this could be related with the moisture content of the sediment. Besides, after hydratation of the sediment, the community rapidly increased its density. Cyanobacteria were the most resistant group to desiccation and the one who had the faster reaction to hydratation.

References

Acuña, V., C. Vilches, and A. Giorgi. 2011. As productive and slow as a stream can be the metabolism of a Pampean stream. Journal of the North American Benthological Society 30:71-83. https://doi.org/10.1899/09-082.1.

Altieri, P. D. 2022. Estudio de las tramas tróficas de macroinvertebrados en bañados de desborde fluvial del área pampeana con diferentes usos del suelo. PhD Thesis. Doctora en Ciencias Naturales. Universidad Nacional de La Plata. Argentina. In press.

APHA/AWWA. 2012. Standard Methods for the Examination of Water and Wastewater. ISBN 978-087553-013-0.

Benenati, P. L., J. P. Shannon, and D. W. Blinn. 1998. Desiccation and recolonization of phytobenthos in a regulated desert river: Colorado River at Lees Ferry, Arizona, USA. Regulated Rivers: Research and Management 14(6):519-532. https://doi.org/10.1002/(SICI)1099-1646(1998110)14:6<519::AID-RRR518>3.0.CO;2-H.

Bogan, M. T., E. T. Chester, T. Datry, A. L. Murphy, B. J. Robson, A. Ruhi, R. Stubbington, and J. E. Whitney. 2017. Resistance, Resilience, and Community Recovery in Intermittent Rivers and Ephemeral Streams. Pp. 349-376 in T. Datry, N. Bonada and A. Boulton (eds.). Intermittent Rivers and Ephemeral Streams. Elsevier. https://doi.org/10.1016/B978-0-12-803835-2.00013-9.

Chester, E. T., and B. J. Robson. 2014. Do recolonisation processes in intermittent streams have sustained effects on benthic algal density and assemblage composition? Marine and Freshwater Research 65:784. https://doi.org/10.1071/MF13239.

Cochero, J., M. Licursi, and N. Gómez. 2015. Changes in the epipelic diatom assemblage in nutrient rich streams due to the variations of simultaneous stressors. Limnologica 51:15-23. https://doi.org/10.1016/j.limno.2014.10.004.

Cochero, J., M. M. Nicolosi Gelis, M. B. Sathicq, and N. Gómez. 2018. Biofilm early stage development in two nutrient-rich streams with different urban impacts: Biofilm development in urban streams. River Research and Applications 34:755-764. https://doi.org/10.1002/rra.3290.

Cochero, J., A. Romaní, and N. Gómez. 2013. Delayed response of microbial epipelic biofilm to nutrient addition in a Pampean stream. Aquatic Microbial Ecology 69:145-155. https://doi.org/10.3354/ame01630.

Cochran, W. G. 1951. Testing a Linear Relation among Variances. Biometrics 7:17-32. https://doi.org/10.2307/3001601.

Cohen, J. 2013. Statistical Power Analysis for the Behavioral Sciences. Second edition. Routledge, New York. https://doi.org/10.4324/9780203771587.

Consalvey, M., B. Jesus, R. G. Perkins, V. Brotas, G. J. C. Underwood, and D. M. Paterson. 2004. Monitoring Migration and Measuring Biomass in Benthic Biofilms: The Effects of Dark/far-red Adaptation and Vertical Migration on Fluorescence Measurements. Photosynthesis Research 81:91-101. https://doi.org/10.1023/B:PRES.0000028397.86495.b5.

Davis, J. S. 1972. Survival records in the algae, and the survival role of certain algal pigments, fat, and mucilaginous substances. Biologist 54:52-93.

Extence, C. A., D. M. Balbi, and R. P. Chadd. 1999. River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectives. Regulated Rivers: Research and Management 15:545-574. https://doi.org/10.1002/(SICI)1099-1646(199911/12)15:6<545::AID-RRR561>3.0.CO;2-W.

Fazi, S., S. Amalfitano, C. Piccini, A. Zoppini, A. Puddu, and J. Pernthaler. 2008. Colonization of overlaying water by bacteria from dry river sediments: Bacterial colonization of overlaying water. Environmental Microbiology 10:2760-2772. https://doi.org/10.1111/j.1462-2920.2008.01695.x.

Giorgi, A. D. N. 1998. PhD Thesis. Factores reguladores del fitobentos de arroyos de llanura. Doctor en Ciencias Naturales. Universidad Nacional de Luján. Argentina. URL: sedici.unlp.edu.ar/handle/10915/4634.

Giorgi, A., C. Feijoó, and G. Tell. 2005. Primary producers in a Pampean stream: temporal variation and structuring role. Biodiversity and Conservation 14:1699-1718. https://doi.org/10.1007/s10531-004-0694-z.

Gómez, N., and M. Licursi. 2001. The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology 35:173-181. https://doi.org/10.1023/A:1011415209445.

Gómez, N., A. Siri, L. R. Capítulo, D. C. Colautti, L. Alcalde, A. R. Capítulo, M. Donato, M. Fernanda Álvarez, J. R. G. de Souza, R. F. Jensen, D. E. Bauer, M. Maroñas, J. M. Paredes del Puerto, P. Altieri, L. C. Armendáriz, H. H. Benitez, M. J. Cassano, B. Cortese, H. D. Di Giorgi, J. L. Donadelli, M. M. Nicolosi Gelis, I. D. García, T. Maiztegui, A. H. Paracampo, R. M. Sánchez, M. B. Sathicq, and L. N. S. R. Catanzaro. 2022. Effects of urban demand for food and water on physicochemicals and biotic structure of riverine wetlands in the Pampean plain. Ecohydrology and Hydrobiology 22:355-369. https://doi.org/10.1016/j.ecohyd.2021.08.006.

Gottlieb, A., J. Richards, and E. Gaiser. 2005. Effects of desiccation duration on the community structure and nutrient retention of short and long-hydroperiod Everglades periphyton mats. Aquatic Botany 82:99-112. https://doi.org/10.1016/j.aquabot.2005.02.012.

Happey-Wood, C. M. 1988. Vertical-migration patterns of flagellates in a community of freshwater benthic algae. Hydrobiologia 161:99-123. https://doi.org/10.1007/BF00044104.

Hasler, P., J. Stepankova, J. Spackova, J. Neustupa, M. Kitner, P. Hekera, J. Vesela, J. Burian, and A. Poulickova. 2008. Epipelic cyanobacteria and algae: a case study from Czech ponds. Fottea 8:133-146. https://doi.org/10.5507/fot.2008.012.

Karsten, U., and A. Holzinger. 2014. Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration. Biodiversity and Conservation 23:1845-1858. https://doi.org/10.1007/s10531-014-0653-2.

Lake, P. S. 2003. Ecological effects of perturbation by drought in flowing water. Freshw Biol 48(7):1161-1172. https://doi.org/10.1046/j.1365-2427.2003.01086.x.

Larson, C. A., and S. I. Passy. 2012. Taxonomic and functional composition of the algal benthos exhibits similar successional trends in response to nutrient supply and current velocity. FEMS Microbiology Ecology 80:352-362. https://doi.org/10.1111/j.1574-6941.2012.01302.x.

Ledger, M. E., R. M. L. Harris, P. D. Armitage, and A. M. Milner. 2008. Disturbance frequency influences patch dynamics in stream benthic algal communities. Oecologia 155:809-819. https://doi.org/10.1007/s00442-007-0950-5.

Lukács, Á., I. Bácsi, Z. Nemes‐Kókai, G. Borics, G. Várbíró, E. T‐Krasznai, and V. B‐Béres. 2021. Strong influence of climatic extremes on diversity of benthic algae and cyanobacteria in a lowland intermittent stream. Ecohydrology 14(4):e2286. https://doi.org/10.1002/eco.2286.

Mac Loughlin, T. M., L. Peluso, and D. J. G. Marino. 2017. Pesticide impact study in the peri-urban horticultural area of Gran La Plata, Argentina. Science of The Total Environment 598:572-580. https://doi.org/10.1016/j.scitotenv.2017.04.116.

Martínez, D. E., and M. Osterrieth. 1999. Geoquímica de la sílice disuelta en el Acuífero Pampeano en la Vertiente Sudoriental de Tandilia. Hidrología Subterránea 13:241-250.

McKew, B. A., J. D. Taylor, T. J. McGenity, and G. J. C. Underwood. 2011. Resistance and resilience of benthic biofilm communities from a temperate saltmarsh to desiccation and rewetting. The ISME Journal 5:30-41. https://doi.org/10.1038/ismej.2010.91.

Mosisch, T. D. 2001. Effects of desiccation on stream epilithic algae. New Zealand Journal of Marine and Freshwater Research 35:173-179. https://doi.org/10.1080/00288330.2001.9516987.

Nejadsattari, T. 1992. Patterns of epipelic diatoms and oxygen distributions in stream sediments - ProQuest. Iowa State University.

Nicolosi Gelis, M. M. 2021. PhD Thesis. Las diatomeas del biofilm fluvial como indicadores ambientales a corto plazo en el seguimiento de la recuperación de la calidad del agua de sistemas acuáticos pampeanos. Doctora en Ciencias Naturales, Universidad Nacional de La Plata. Argentina. https://doi.org/10.35537/10915/114100.

Nicolosi Gelis, M. M., J. Cochero, M. B. Sathicq, and N. Gómez. 2020. Effect of pollution on early diatom colonisation on artificial substrata in urban lowland streams. Marine and Freshwater Research 72:365. https://doi.org/10.1071/MF19293.

Overpeck, J. T., and J. E. Cole. 2006. Abrupt Change in Earth’s Climate System. Annual Review of Environment and Resources 31:1-31. https://doi.org/10.1146/annurev.energy.30.050504.144308.

Pérez, G. L., A. Torremorell, H. Mugni, P. Rodríguez, M. S. Vera, M. D. Nascimento, L. Allende, J. Bustingorry, R. Escaray, M. Ferraro, I. Izaguirre, H. Pizarro, C. Bonetto, D. P. Morris, and H. Zagarese. 2007. Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study. Ecological Applications 17(8):2310-2322. https://doi.org/10.1890/07-0499.1.

Peterson, C. G. 1996. Mechanisms of Lotic Microalgal Colonization Following Space-Clearing Disturbances Acting at Different Spatial Scales. Oikos 77:417. https://doi.org/10.2307/3545932.

Peterson, C. G., and A. J. Boulton. 1999. Stream permanence influences microalgal food availability to grazing tadpoles in arid-zone springs. Oecologia 118:340-352. https://doi.org/10.1007/s004420050735.

Pfister, L., C. E. Wetzel, J. Klaus, N. Martínez‐Carreras, M. Antonelli, A. J. Teuling, and J. J. McDonnell. 2017. Terrestrial diatoms as tracers in catchment hydrology: a review. WIREs Water 4. https://doi.org/10.1002/wat2.1241.

Revsbech, N. P., and B. B. Jorgensen. 1983. Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: Capabilities and limitations of the method1. Limnology and Oceanography 28:749-756. https://doi.org/10.4319/lo.1983.28.4.0749.

Robson, B. J. 2000. Role of residual biofilm in the recolonization of rocky intermittent streams by benthic algae. Marine and Freshwater Research 51:725. https://doi.org/10.1071/MF00012.

Robson, B. J., and T. G. Matthews. 2004. Drought refuges affect algal recolonization in intermittent streams. River Research and Applications 20:753-763. https://doi.org/10.1002/rra.789.

Robson, B. J., T. G. Matthews, P. R. Lind, and N. A. Thomas. 2008. Pathways for algal recolonization in seasonally-flowing streams. Freshwater Biology 53:2385-2401. https://doi.org/10.1111/j.1365-2427.2008.02061.x.

Rodrigues Capítulo, A., N. Gómez, A. Giorgi, and C. Feijoo. 2010. Global changes in pampean lowland streams (Argentina): implications for biodiversity and functioning. Pp. 18 in R. J. Stevenson and S. Sabater (eds.). Global Change and River Ecosystems - Implications for Structure, Function and Ecosystem Services. Developments in Hydrobiology 215, vol 215. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0608-8_5.

Round, F. E. 1981. The Ecology of Algae. Cambridge University Press. https://doi.org/10.1017/S0025315400057507.

Round, F. E., and J. W. Eaton. 1966. Persistent, Vertical-Migration Rhythms in Benthic Microflora: III. The Rhythm of Epipelic Algae in a Freshwater Pond. Journal of Ecology 54(3):609-615. https://doi.org/10.2307/2257806.

Sabater, S., H. Guasch, A. Romaní, and I. Muñoz. 2000. Stromatolitic communities in Mediterranean streams: adaptations to a changing environment. Biodiversity and Conservation 9:379-392. https://doi.org/10.1023/A:1008954801397.

Sabater, S., X. Timoner, G. Bornette, M. De Wilde, J. C. Stromberg, and J. C. Stella. 2017. The Biota of Intermittent Rivers and Ephemeral Streams: Algae and Vascular Plants. Pp. 189-216 in T. Datry, N. Bonada and A. Boulton (eds.). Intermittent Rivers and Ephemeral Streams. Academic Press. https://doi.org/10.1016/B978-0-12-803835-2.00016-4.

Sabater, S., X. Timoner, C. Borrego, and V. Acuña. 2016. Stream Biofilm Responses to Flow Intermittency: From Cells to Ecosystems. Frontiers in Environmental Science 4. https://doi.org/10.3389/fenvs.2016.00014.

Shapiro, S. S., and M. B. Wilk. 1965. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 52:591-611. https://doi.org/10.2307/2333709.

Sierra, M. V., and N. Gómez. 2007. Structural Characteristics and Oxygen Consumption of the Epipelic Biofilm in Three Lowland Streams Exposed to Different Land Uses. Water, Air, and Soil Pollution 186:115-127. https://doi.org/10.1007/s11270-007-9469-y.

Sierra, M. V., N. Gómez, A. V. Marano, and M. A. Di Siervi. 2013. Caracterización funcional y estructural del biofilm epipélico en relación al aumento de la urbanización en un arroyo de la Llanura Pampeana (Argentina). Ecología Austral 23:108-118. https://doi.org/10.25260/EA.13.23.2.0.1166.

Solari, L. C., and M. C. Claps. 1996. Planktonic and benthic algae of a pampean river (Argentina) : comparative analysis. Annales de Limnologie - International Journal of Limnology 32:89-95. https://doi.org/10.1051/limn/1996011.

Solari, L. C., K. P. Quaini, and N. A. Gabellone. 2018. Succession of microconsumers in waterlogged pampean soils (Buenos Aires, Argentina) and its significance for nearby wetlands. Aquatic Sciences 80:42. https://doi.org/10.1007/s00027-018-0593-0.

Stromberg, J. C., K. J. Bagstad, J. M. Leenhouts, S. J. Lite, and E. Makings. 2005. Effects of stream flow intermittency on riparian vegetation of a semiarid region river (San Pedro River, Arizona). River Research and Applications 21:925-938. https://doi.org/10.1002/rra.858.

Timoner, X., V. Acuña, L. Frampton, P. Pollard, S. Sabater, and S. E. Bunn. 2014. Biofilm functional responses to the rehydration of a dry intermittent stream. Hydrobiologia 727:185-195. https://doi.org/10.1007/s10750-013-1802-4.

Timoner, X., M. Colls, S. M. Salomón, F. Oliva, V. Acuña, and S. Sabater. 2020. Does biofilm origin matter? Biofilm responses to non-flow period in permanent and temporary streams. Freshwater Biology 65:514-523. https://doi.org/10.1111/fwb.13447.

Vilches, C., and A. Giorgi. 2010. Metabolism in a macrophyte-rich stream exposed to flooding. Hydrobiologia 654:57-65. https://doi.org/10.1007/s10750-010-0368-7.

Vilches, C., A. Giorgi, and M. Casco. 2013. Periphyton responses to non-point pollution in naturally eutrophic conditions in Pampean streams. Fundamental and Applied Limnology / Archiv für Hydrobiologie 183:63-74. https://doi.org/10.1127/1863-9135/2013/0415.

Zaplara, V. S., L. C. Solari, H. H. Benítez, and N. A. Gabellone. 2018. Microorganismos consumidores en suelos de la llanura de inundación del arroyo El Pescado (Buenos Aires): Experiencia en microcosmos. Revista del Museo Argentino de Ciencias Naturales 12. https://doi.org/10.22179/REVMACN.20.605.

Algal recolonization following an extraordinary drought in permanent lowland streams

Downloads

Published

2023-01-25

How to Cite

Nicolosi Gelis, M. M., Cochero, J., Bauer, D. E., & Gómez, N. (2023). Algal recolonization following an extraordinary drought in permanent lowland streams. Ecología Austral, 33(1), 060–073. https://doi.org/10.25260/EA.23.33.1.0.1999