Relación entre la producción primaria y bacteriana pelágicas en dos lagunas húmicas vegetadas

Relación entre la producción primaria y bacteriana pelágicas en dos lagunas húmicas vegetadas

Alex Aguilar Zurita, Patricia Rodríguez

Resumen


En este trabajo se muestra que la producción primaria del fitoplancton (PP) puede exceder la producción bacteriana (BP) en cuerpos de agua húmicos vegetados, dando como resultado una columna de agua autotrófica, a pesar de ser ambientes restringidos lumínicamente y con alta concentración de carbono orgánico disuelto, sustrato de la producción bacteriana. Intuitivamente, estas condiciones favorecerían el desarrollo de una columna de agua heterótrofa. Por el contrario, en este estudio la BP representó entre 1.3 y 5% de la PP durante la mayor parte de los muestreos.Sólo una vez, durante el verano tardío, BP llegó al 71% de la PP. Si bien no podemos determinar el mecanismo detrás de estos resultados, sí podemos hipotetizar acerca de ellos basados en experimentación y estudios previos en el mismo humedal. De este modo, las condiciones de autotrofia se ven favorecidas principalmente por: i) la naturaleza somera de las lagunas, que amortigua el efecto de la atenuación lumínica al considerar tasas integradas de producción en toda la columna de agua, ii) la presencia de bacterias fotosintéticas anaeróbicas y anoxigénicas bajo la cobertura macrofítica, y iii) tasas elevadas de depredación sobre el bacterioplancton por parte de nanoflagelados heterotróficos.


Texto completo:

PDF (English)

Referencias


Algesten, G., S. Sobek, A K. Bergström, A. Jonsson, L. J. Tranvik, and M. Jansson. 2005. Contribution of sediment respiration to summer CO2 emission from low productive boreal and subarctic lakes. Microbial Ecology 50:529-535.

Andersson, E., and A-K. Brunberg. 2006. Net autotrophy in an oligotrophic lake rich in dissolved organic carbon and with high benthic primary production. Aquatic Microbial Ecology 43:1-10.

Ask, J, J Karlsson, L Persson, P Ask, P Byström, and M Jansson. 2009. Terrestrial organic matter and light penetration: Effects on bacterial and primary production in lakes. Limnology and Oceanography 54:2034-2040.

APHA (American Public Health Association). 2005. Standard Methods for the Examination of Water and Wastewaters. American Water Works Association, Water Environmental Federation, Washington, DC. Pp. 1656.

Battin, T. J., S. Luyssaert, L. A. Kaplan, A. K. Aufdenkampe, A. Richter, and L. J. Tranvik. 2009. The boundless carbon cycle. Nature Geosciences 2:598-600

Cole, J. J., M. L. Pace, S. Carpenter, and J. F. Kitchell. 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography 45:1718-1730.

del Giorgio, P. A., J. J. Cole, and A. Cimbleris. 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385:148-151.

del Giorgio, P. A., and J. J. Cole. 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29:503-541.

de Tezanos Pinto, P., and I. O’Farrell. 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740:13-24.

Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, et al. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51:2388-2397.

Falkowski, P. G., and J. A. Raven. 2007. Aquatic photosynthesis. Princeton University Press, Pp. 484.

Holm-Hansen, O., and E. W. Helbling. 1995. Techniques for measurement of primary production in phytoplankton (in Spanish). In: K. Alveal, M. E. Ferrario, E. C. Oliveira and E. Sar (eds.). Phycological methods handbook (in Spanish). University of Concepción, Chile. Pp. 329-350.

Izaguirre, I., H. Pizarro, P. de Tezanos Pinto, P. Rodríguez, I. O'Farrell, F. Unrein, and J. M. Gasol. 2010. Macrophyte influence on the structure and productivity of photosynthetic picoplankton in wetlands. Journal of Plankton Research 32:221-238.

Izaguirre, I., R. Sinistro, M. R. Schiaffino, M. L. Sánchez, F. Unrein, and R. Massana. 2012. Grazing rates of protists in wetlands under contrasting light conditions due to floating plants. Aquatic Microbial Ecology 65:221-232.

Jansson, M., A. K. Bergström, P. Blomqvist, and S. Drakare. 2000. Allochtonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81:3250-3255

Jansson, M., J. Karlsson, and A. Jonsson. 2012. Carbon dioxide supersaturation promotes primary production in lakes. Ecology Letters 15:527-532.

Jasser, I., I. Kostrzewska-Szlakowska, J. Ejsmont-Karabin, K. Kalinowska, and T. Węgleńska. 2009. Autotrophic versus heterotrophic production and components of trophic chain in humic lakes: the role of microbial communities. Polish Journal of Ecology 57:423-439.

Jespersen A. M., and K. Christoffersen. 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109:445-454.

Jones, R. I. 1992. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229:73-91.

Kirchman, D. L. 2012. Processes in microbial ecology. Oxford University Press. Pp. 312.

Kirk, J. T. O. 2011. Light and Photosynthesis in Aquatic Ecosystems. University Press, Cambridge, UK. Pp. 649.

Kortelainen, P., M. Rantakari, J. T. Huttunen, T. Mattsson, J. Alm, et al. 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology 12:1554-1567.

Lovett, G. M., J. J. Cole, and M. L. Pace. 2006. Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems 9:152-155.

Peixoto, R. B., H. Marotta, D. Bastviken, and A. Enrich-Prast. 2016. Floating aquatic macrophytes can substantially offset open water CO2 emissions from tropical floodplain lake ecosystems. Ecosystems doi:10.1007/s10021-016-9964-3.

Reche, I., M. L. Pace, and J. J. Cole. 1998. Interactions of photobleaching and inorganic nutrients in determining bacterial growth on colored dissolved organic carbon. Microbial Ecology 36:270-280.

Rodríguez, P., and H. Pizarro. 2007. Phytoplankton productivity in a highly colored shallow lake of a South American floodplain. Wetlands 27:1153-1160.

Rodríguez, P., H. Pizarro, and MS Vera. 2012. Size fractionated phytoplankton production in two humic shallow lakes with contrasting coverage of free floating plants. Hydrobiologia 691:285-298.

Rodríguez, P., and H. Pizarro. 2015. Phytoplankton and periphyton production and its relation to temperature in a humic lagoon. Limnologica 55:9-12.

Roehm, C., R. Giesler, and J. Karlsson. 2009. Bioavailability of terrestrial organic carbon to lake bacteria: The case of a degrading subarctic permafrost mire complex. Journal of Geophysical Research: Biogeosciences 114:G03006.

Simon, M., and F. Azam. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51:201-213.

Smith, D. C., and F. Azam. 1992. A simple, economical method for measuring bacterial protein synthesis rates in sea water using 3H-Leucine. Marine Microbial Food Webs 6:107-109.

Stanley, E. H., M. D. Johnson, and A. K. Ward. 2003. Evaluating the influence of macrophytes on algal and bacterial production in multiple habitats of a freshwater wetland. Limnology and Oceanography 48:1101-1111.

Stumm, W., and J. Morgan. 1996. Aquatic Chemistry. Wiley, New York. Pp. 1040.


Enlaces refback

  • No hay ningún enlace refback.


ISSN en línea: 0327-5477; impresa 1667-782X (español); 1667-7838 (inglés)