Relationship between phytoplankton and bacterioplankton production in vegetated humic shallow lakes

Authors

  • Alex Aguilar Zurita Defense against desertification and land conservation office (DSyLCD), Ministry of Environment and Sustainable Development (MayDS). Ciudad de Buenos Aires, Argentina (current address). Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.
  • Patricia Rodríguez Austral Centre for Scientific Research (CADIC-CONICET). Ushuaia, Tierra del Fuego, Argentina (current address). Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.

DOI:

https://doi.org/10.25260/EA.16.26.3.0.223

Abstract

In this study, we show that depth-integrated pelagic primary production (PP) can exceed bacterioplankton production (BP) in vegetated humic shallow lakes, giving as a result an autotrophic water column, despite light restrictions and availability of organic carbon for lake bacteria. Intuitively, these conditions should favor the development of a heterotrophic water column. Instead, during our survey, BP represented between 1.3 to 5% of PP most of the time. Only once, during late summer, BP was ~71% of PP. Although we cannot conclude about the mechanisms behind the observed results, previous surveys and experimentation in the wetland allow us to hypothesize that autotrophic conditions were favored by: i) the shallow nature of the lakes, which compensates for light attenuation by organic matter when integrating production in the water column, ii) the presence of anaerobic anoxygenic photosynthetic bacteria below the macrophyte cover, and iii) high predation rates on bacterioplankton by heterotrophic flagellates below the floating plants.

Author Biography

Patricia Rodríguez, Austral Centre for Scientific Research (CADIC-CONICET). Ushuaia, Tierra del Fuego, Argentina (current address). Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.

Investigadora adjunta, Limnología (CADIC-CONICET)

Profesora adjunta, Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (Ecología General)

References

Algesten, G., S. Sobek, A K. Bergström, A. Jonsson, L. J. Tranvik, and M. Jansson. 2005. Contribution of sediment respiration to summer CO2 emission from low productive boreal and subarctic lakes. Microbial Ecology 50:529-535.

Andersson, E., and A-K. Brunberg. 2006. Net autotrophy in an oligotrophic lake rich in dissolved organic carbon and with high benthic primary production. Aquatic Microbial Ecology 43:1-10.

Ask, J, J Karlsson, L Persson, P Ask, P Byström, and M Jansson. 2009. Terrestrial organic matter and light penetration: Effects on bacterial and primary production in lakes. Limnology and Oceanography 54:2034-2040.

APHA (American Public Health Association). 2005. Standard Methods for the Examination of Water and Wastewaters. American Water Works Association, Water Environmental Federation, Washington, DC. Pp. 1656.

Battin, T. J., S. Luyssaert, L. A. Kaplan, A. K. Aufdenkampe, A. Richter, and L. J. Tranvik. 2009. The boundless carbon cycle. Nature Geosciences 2:598-600

Cole, J. J., M. L. Pace, S. Carpenter, and J. F. Kitchell. 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography 45:1718-1730.

del Giorgio, P. A., J. J. Cole, and A. Cimbleris. 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385:148-151.

del Giorgio, P. A., and J. J. Cole. 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29:503-541.

de Tezanos Pinto, P., and I. O’Farrell. 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740:13-24.

Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, et al. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51:2388-2397.

Falkowski, P. G., and J. A. Raven. 2007. Aquatic photosynthesis. Princeton University Press, Pp. 484.

Holm-Hansen, O., and E. W. Helbling. 1995. Techniques for measurement of primary production in phytoplankton (in Spanish). In: K. Alveal, M. E. Ferrario, E. C. Oliveira and E. Sar (eds.). Phycological methods handbook (in Spanish). University of Concepción, Chile. Pp. 329-350.

Izaguirre, I., H. Pizarro, P. de Tezanos Pinto, P. Rodríguez, I. O'Farrell, F. Unrein, and J. M. Gasol. 2010. Macrophyte influence on the structure and productivity of photosynthetic picoplankton in wetlands. Journal of Plankton Research 32:221-238.

Izaguirre, I., R. Sinistro, M. R. Schiaffino, M. L. Sánchez, F. Unrein, and R. Massana. 2012. Grazing rates of protists in wetlands under contrasting light conditions due to floating plants. Aquatic Microbial Ecology 65:221-232.

Jansson, M., A. K. Bergström, P. Blomqvist, and S. Drakare. 2000. Allochtonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81:3250-3255

Jansson, M., J. Karlsson, and A. Jonsson. 2012. Carbon dioxide supersaturation promotes primary production in lakes. Ecology Letters 15:527-532.

Jasser, I., I. Kostrzewska-Szlakowska, J. Ejsmont-Karabin, K. Kalinowska, and T. Węgleńska. 2009. Autotrophic versus heterotrophic production and components of trophic chain in humic lakes: the role of microbial communities. Polish Journal of Ecology 57:423-439.

Jespersen A. M., and K. Christoffersen. 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109:445-454.

Jones, R. I. 1992. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229:73-91.

Kirchman, D. L. 2012. Processes in microbial ecology. Oxford University Press. Pp. 312.

Kirk, J. T. O. 2011. Light and Photosynthesis in Aquatic Ecosystems. University Press, Cambridge, UK. Pp. 649.

Kortelainen, P., M. Rantakari, J. T. Huttunen, T. Mattsson, J. Alm, et al. 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology 12:1554-1567.

Lovett, G. M., J. J. Cole, and M. L. Pace. 2006. Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems 9:152-155.

Peixoto, R. B., H. Marotta, D. Bastviken, and A. Enrich-Prast. 2016. Floating aquatic macrophytes can substantially offset open water CO2 emissions from tropical floodplain lake ecosystems. Ecosystems doi:10.1007/s10021-016-9964-3.

Reche, I., M. L. Pace, and J. J. Cole. 1998. Interactions of photobleaching and inorganic nutrients in determining bacterial growth on colored dissolved organic carbon. Microbial Ecology 36:270-280.

Rodríguez, P., and H. Pizarro. 2007. Phytoplankton productivity in a highly colored shallow lake of a South American floodplain. Wetlands 27:1153-1160.

Rodríguez, P., H. Pizarro, and MS Vera. 2012. Size fractionated phytoplankton production in two humic shallow lakes with contrasting coverage of free floating plants. Hydrobiologia 691:285-298.

Rodríguez, P., and H. Pizarro. 2015. Phytoplankton and periphyton production and its relation to temperature in a humic lagoon. Limnologica 55:9-12.

Roehm, C., R. Giesler, and J. Karlsson. 2009. Bioavailability of terrestrial organic carbon to lake bacteria: The case of a degrading subarctic permafrost mire complex. Journal of Geophysical Research: Biogeosciences 114:G03006.

Simon, M., and F. Azam. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51:201-213.

Smith, D. C., and F. Azam. 1992. A simple, economical method for measuring bacterial protein synthesis rates in sea water using 3H-Leucine. Marine Microbial Food Webs 6:107-109.

Stanley, E. H., M. D. Johnson, and A. K. Ward. 2003. Evaluating the influence of macrophytes on algal and bacterial production in multiple habitats of a freshwater wetland. Limnology and Oceanography 48:1101-1111.

Stumm, W., and J. Morgan. 1996. Aquatic Chemistry. Wiley, New York. Pp. 1040.

Relationship between phytoplankton and bacterioplankton production in vegetated humic shallow lakes

Downloads

Published

2016-12-07

How to Cite

Aguilar Zurita, A., & Rodríguez, P. (2016). Relationship between phytoplankton and bacterioplankton production in vegetated humic shallow lakes. Ecología Austral, 26(3), 305–310. https://doi.org/10.25260/EA.16.26.3.0.223