Germinación y crecimiento de Vicia magellanica: Implicancias para la restauración de áreas incendiadas en el norte de la Patagonia andina
DOI:
https://doi.org/10.25260/EA.21.31.1.0.1140Palabras clave:
regeneración, semillas, temperatura, escarificación, cenizas, compostResumen
Conocer la dinámica de regeneración de las especies pioneras luego de incendios es primordial para diseñar herramientas de protección y restauración de ambientes degradados por fuego. El estudio de la autoecología de las especies nativas puede aportar información muy útil para aplicar en planes de manejo y en medidas de restauración pasiva o activa. En este trabajo se presentan resultados obtenidos a partir de ensayos de germinación y crecimiento de Vicia magellanica (Fabaceae), en suelo quemado, con y sin agregado de compost, a fin de a) identificar factores asociados a los incendios que se puedan relacionar con los patrones de regeneración post-fuego de esta especie, y además b) discutir el potencial de esta especie para su aplicación en restauración de áreas incendiadas del NO de la Patagonia. En general, los porcentajes de germinación de V. magellanica superaron el 90% de germinación total promedio en la mayoría de los tratamientos (control, aplicación de cenizas, escarificación física, estratificación fría). Sin embargo, la aplicación de calor seco, asociado a altas temperaturas edáficas durante un incendio (100 °C y 120 °C) tuvo un efecto negativo sobre la germinación. Los resultados del ensayo de crecimiento en el que se evaluó el desempeño de V. magellanica en un posible escenario de restauración activa luego de un incendio mostraron que las condiciones edáficas asociadas a un suelo quemado permitieron un desarrollo satisfactorio de los individuos. En suelos quemados sin adición de compost se observó una mayor biomasa aérea y subterránea, y un mayor número de flores, en comparación con las plantas con agregado de compost. Esto supondría una ventaja para colonizar áreas con suelos degradados por fuego. Vicia magellanica presenta numerosas características que favorecerían su uso en estrategias de revegetación post-fuego en bosques y matorrales del noroeste patagónico aplicando siembra directa a campo, y particularmente en los primeros estadios luego del incendio.
Citas
Alauzis, M. V., M. J. Mazzarino, E. Raffaele, and L. Roselli. 2004. Wildfires in NW Patagonia: long-term effects on a Nothofagus forest soil. Forest Ecology and Management 192:131-142. https://doi.org/10.1016/j.foreco.2003.11.014.
Albanesi, A., and A. Anriquez. 2003. El fuego y el suelo. Pp. 47-59 en C. R. Kunst, S. Bravo y J. L. Panigatti (eds.). Fuego en los Ecosistemas Argentinos. INTA, Santiago del Estero, Argentina.
Alexopoulos, C. J., C. W. Mims, and M. Blackwell. 1996. Introductory mycology. Fourth Edition. John Wiley and Sons, New York, USA.
Auld, T. D., and M. A. O’Connell. 1991. Predicting patterns of post‐fire germination in 35 eastern Australian Fabaceae. Australian Journal of Ecology 16:53-70. https://doi.org/10.1111/j.1442-9993.1991.tb01481.x.
Baigorria, T., D. Gómez, C. Cazorla, A. Lardone, M. Bojanich, B. Aimetta, A. Bertolla, M. Cagliero, D. Vilches, D. Rinaudo, and A. Canal. 2013. Capítulo 19: Bases para el manejo de vicia como antecesor del cultivo de maíz. Pp. 158-164 en C. Álvarez, A. Quiroga, D. Santos y M. Bodrero (eds.). Contribuciones de los cultivos de cobertura a la sostenibilidad de los sistemas de producción. INTA, La Pampa, Argentina. URL: https://inta.gob.ar/sites/default/files/scripttmp-inta_cultivos_de_cobertura_.pdf#page=158.
Baskin, C. C., and J. M. Baskin. 1998. Seeds: ecology, biogeography and evolution of dormancy and germination. Academic Press, San Diego, USA.
Blackhall, M. 2012. Respuestas de especies leñosas a herbívoros e incendios en bosques y matorrales del noroeste de la Patagonia: Estudio de la inflamabilidad vegetal. Tesis Doctoral. Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, San Carlos de Bariloche. Argentina. Pp. 184.
Blackhall, M., J. Franzese, E. Raffaele, and M. E. Gobbi. 2016. Efecto del fuego sobre la germinación de especies leñosas y trepadoras de los bosques y matorrales del noroeste patagónico. Pp. 445-449 en Libro de Actas V Jornadas Forestales Patagónicas, III Jornadas Forestales de Patagonia Sur y Ecofuego II, Esquel, Chubut, Argentina.
Blackhall, M., E. Raffaele, and T. T. Veblen. 2008. Cattle affect early post-fire regeneration in a Nothofagus dombeyi-Austrocedrus chilensis mixed forest in northern Patagonia, Argentina. Biological Conservation 141:2251-2261. https://doi.org/10.1016/j.biocon.2008.06.016.
Blackhall, M., E. Raffaele, and T. T. Veblen. 2015. Combined effects of fire and cattle in shrublands and forests of northwest Patagonia. Ecología Austral 25:1-10. https://doi.org/10.25260/EA.15.25.1.0.48.
Bond, W. J., and B. W. van Wilgen. 1996. Fire and Plants. Population and Community Biology Series 14. Chapman and Hall, London, UK. https://doi.org/10.1007/978-94-009-1499-5.
Cavallero, L., and M. Blackhall. 2020. Resprouting increases seedling persistence likelihood after fire in a semelparous bamboo species. Acta Oecologica 108:103623. https://doi.org/10.1016/j.actao.2020.103623.
Correa, M. N. 1984. Flora Patagónica. Dicotiledoneae dialipétalas (Salicaceae a Cruciferae). Tomo 8, Parte 4a. Colección Científica INTA, Buenos Aires, Argentina.
Downie, J. A. 2005. Legume haemoglobins: symbiotic nitrogen fixation needs bloody nodules. Current Biology 15:196-198. https://doi.org/10.1016/j.cub.2005.03.007.
Ezcurra, C., and C. Brion. 2005. Plantas del Nahuel Huapi. Catálogo de la Flora Vascular del Parque Nacional Nahuel Huapi, Argentina. Universidad Nacional del Comahue, Bariloche, Argentina.
Fenner, M., and K. Thompson. 2005. Seed dormancy. Pp. 97-109 in M. Fenner and K. Thompson (eds.). The ecology of seeds. Cambridge University Press, Nueva York, USA.
Fernández-Luqueño, F., L. Corlay-Chee, E. Robledo-Santoyo, J. Pineda-Pineda, A. Vázquez-Alarcón, L. A. Miranda-Romero, G. Cabrera-Lazaro, J. Méndez-Bautista, F. López-Valdez, and L. Dendooven. 2012. Growth and development of common vetch (Vicia sativa L.) in a gasoline-polluted soil amended with organic or inorganic amendments. African Journal of Agricultural Research 7:1259-1267.
Ferreiro, N., P. Satti, M. González‐Polo, and M. J. Mazzarino. 2020. Composts promote short‐term rehabilitation in a Patagonian roadside affected by tephra deposition. Restoration Ecology 28:73-81. https://doi.org/10.1111/rec.13034.
Franzese, J., and L. Ghermandi. 2012. Effect of fire on recruitment of two dominant perennial grasses with different palatability from semi-arid grasslands of NW Patagonia (Argentina). Plant Ecology 213:471-481.
Franzese, J., L. Ghermandi, and D. Bran. 2009. Post‐fire shrub recruitment in a semi‐arid grassland: the role of microsites. Journal of Vegetation Science 20:251-259. https://doi.org/10.1111/j.1654-1103.2009.05733.x.
Gobbi, M. E., and V. Labud. 2005. Respuesta de plantines de ciprés (Austrocedrus chilensis) y coihue (Nothofagus dombeyi) a la aplicación de composts. Pp. 83-87 en I Reunión sobre ecología, conservación y uso de los bosques de ciprés de la cordillera. Esquel, Chubut, Argentina.
Gobbi, M. E., J. Puntieri, and S. Calvelo. 1995. Post-fire recovery and invasion by alien plant species in a South American woodland-steppe ecotone. Pp. 105-115 in P. Pysek, K. Prach, M. Rejmanek and M. Wade (eds.). Plant Invasions: General Aspects and Special Problems. Academic Publishing, Amsterdam, Germany.
Gómez Ruiz, P. A. 2011. Efecto de la densidad de siembra sobre las interacciones biológicas entre las leguminosas Lupinus bogotensis y Vicia benghalensis con las nativas Solanum oblongifolium y Viburnum tinoides en parcelas experimentales de restauración ecológica del bosque altoandino. Tesis de Magister. Universidad Nacional de Colombia, Bogotá. Colombia. Pp. 108.
Gómez-González, S., and L. A. Cavieres. 2009. Litter burning does not equally affect seedling emergence of native and alien species of the Mediterranean-type Chilean matorral. International Journal of Wildland Fire 18:213-221. https://doi.org/10.1071/WF07074.
Gómez-González, S., C. Torres-Díaz, and E. Gianoli. 2011. The effects of fire-related cues on seed germination and viability of Helenium aromaticum (Hook.) HL Bailey (Asteraceae). Gayana Botánica 68:86-88. https://doi.org/10.4067/S0717-66432011000100007.
González-Zertuche, L., and A. Orozco-Segovia. 1996. Métodos de análisis de datos en la germinación de semillas, un ejemplo: Manfreda brachystachya. Botanical Sciences 58:15-30. https://doi.org/10.17129/botsci.1484.
Guerrero, C., I. Gómez, R. Moral, J. Mataix-Solera, J. Mataix-Beneyto, and T. Hernández. 2001. Reclamation of a burned forest soil with municipal waste compost: macronutrient dynamic and improved vegetation cover recovery. Bioresource Technology 76:221-227. https://doi.org/10.1016/S0960-8524(00)00125-5.
Hanley, M., J. Unna, and B. Darvill. 2003. Seed size and germination response: a relationship for fire-following plant species exposed to thermal shock. Oecologia 134:18-22. https://doi.org/10.1007/s00442-002-1094-2.
Hanlin, R. T. 1998. Combined keys to Illustrated genera of ascomycetes. Volumes I and II. American Phytopathological Society Press, St. Paul, Minnesota, USA.
Hu, X., T. Li, J. Wang, Y. Wang, C. C. Baskin, and J. M. Baskin. 2013. Seed dormancy in four Tibetan Plateau Vicia species and characterization of physiological changes in response of seeds to environmental factors. Seed science research 23:133-140. https://doi.org/10.1017/S0960258513000019.
Keeley, J. E., and C. J. Fotheringham. 2000. Role of fire in regeneration from seed. Pp. 311-330 in M. Fenner (ed.). Seeds: the ecology of regeneration in plant communities. Second Edition. CABI Publishing, New York, New York, USA. https://doi.org/10.1079/9780851994321.0311.
Kitzberger, T., G. L. W. Perry, J. Paritsis, J. H. Gowda, A. J. Tepley, A. Holz, and T. T. Veblen. 2016. Fire-vegetation feedbacks and alternative states: common mechanisms of temperate forest vulnerability to fire in southern South America and New Zealand. New Zealand Journal of Botany 54:247-272. https://doi.org/10.1080/0028825X.2016.1151903.
Kowaljow, E., M. J. Mazzarino, P. Satti, and C. Jiménez-Rodríguez. 2010. Organic and inorganic fertilizer effects on a degraded Patagonian rangeland. Plant and Soil 332:135-145. https://doi.org/10.1007/s11104-009-0279-4.
Kunst, C., and S. Bravo. 2003. Fuego, calor y temperatura. Pp. 39-45 en C. R. Kunst, S. Bravo y J. L. Panigatti (eds.). Fuego en los ecosistemas Argentinos. INTA, Santiago del Estero, Argentina.
Larney, F. J., and D. A. Angers. 2012. The role of organic amendments in soil reclamation: a review. Canadian Journal of Soil Science 92:19-38. https://doi.org/10.4141/cjss2010-064.
van der Maarel, E. 2005. Vegetation ecology-an overview. Pp. 1-51 in E. van der Maarel (ed.). Vegetation ecology. Blackwell, Oxford, UK.
Mariani, M., A. Holz, T. T. Veblen, G. Williamson, M. Fletcher, and D. M. J. S. Bowman. 2018. Climate change amplifications of climate‐fire teleconnections in the Southern Hemisphere. Geophysical Research Letters 45:5071-5081. https://doi.org/10.1029/2018GL078294.
Martínez, F., G. Cuevas, R. Calvo, and I. Walter. 2003. Biowaste effects on soil and native plants in a semiarid ecosystem. Journal of Environmental Quality 32:472-479. https://doi.org/10.2134/jeq2003.4720.
Meyer, V. F., E. F. Redente, K. A. Barbarick, and R. Brobst. 2001. Biosolids applications affect runoff water quality following forest fire. Journal of Environmental Quality 30:1528-1532. https://doi.org/10.2134/jeq2001.3051528x.
del Moral, R., L. R. Walker, and J. P. Bakker. 2007. Insights gained from succession for the restoration of landscape structure and function. Pp. 19-44 in L. R. Walker, J. Walker and R. J. Hobbs (eds.). Linking restoration and ecological succession. Springer, New York, New York, USA. https://doi.org/10.1007/978-0-387-35303-6_2.
del Moral, R., and D. M. Wood. 1993. Early primary succession on the volcano Mount St. Helens. Journal of Vegetation Science 4:223-234. https://doi.org/10.2307/3236108.
Morales, D., C. M. Rostagno, and L. La Manna. 2013. Runoff and erosion from volcanic soils affected by fire: the case of Austrocedrus chilensis forests in Patagonia, Argentina. Plant and Soil 370:367-380. https://doi.org/10.1007/s11104-013-1640-1.
Mortlock, B. W. 2000. Local seed for revegetation: where will all that seed come from? Ecological Management and Restoration 1:93-101. https://doi.org/10.1046/j.1442-8903.2000.00029.x.
Muñoz, M. R., and E. R. Fuentes. 1989. Does fire induce shrub germination in the Chilean matorral? Oikos 56:177-181. https://doi.org/10.2307/3565333.
Nursu’aidah, H. 2014. Effects of fertilizer on root nodulation, chlorophyll content and nitrate reductase activity in long bean and mung bean. Tesis de maestría. Facultad de Ciencias, Universidad de Malaya, Kuala Lumpur. Malasia. Pp. 113.
de Paz, M. 2014. Heterogeneidad de micrositio, dinámica de nutrientes y facilitación en especies leñosas de los matorrales del NO de la Patagonia. Tesis Doctoral. Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, San Carlos de Bariloche. Argentina. Pp. 281.
Prach, K., R. Marrs, P. Pyšsek, and R. van Diggelen. 2007. Manipulation of succession. Pp. 121-149 in L. R. Walker, J. Walker and R. J. Hobbs (eds.). Linking restoration and ecological succession. Springer, New York, New York, USA. https://doi.org/10.1007/978-0-387-35303-6_6.
Qasem, J. R. 2020. Weed Seed Dormancy: The Ecophysiology and Survival Strategies. Pp. 1-36 en J.C. Jimenez Lopez (ed.). Seed Dormancy and Germination. IntechOpen, London, UK.
Raffaele, E., T. T. Veblen, M. Blackhall, and N. Tercero-Bucardo. 2011. Synergistic influences of introduced herbivores and fire on vegetation change in northern Patagonia, Argentina. Journal of Vegetation Science 22:59-71. https://doi.org/10.1111/j.1654-1103.2010.01233.x.
Saruhan, V., A. Kusvuran, and K. Kokten. 2015. Effects of sewage sludge used as fertilizer on the yield and chemical contents of common vetch (Vicia sativa L.) and soil. Legume Research-An International Journal 38:488-495. https://doi.org/10.5958/0976-0571.2015.00133.2.
Sawma, J. T., and C. L. Mohler. 2002. Evaluating seed viability by an unimbibed seed crush test in comparison with the Tetrazolium Test. Weed Technology 16:781-786. https://doi.org/10.1614/0890-037X(2002)016[0781:ESVBAU]2.0.CO;2.
Smýkal, P., V. Vernoud, M. W. Blair, A. Soukup, and R. D. Thompson. 2014. The role of the testa during development and in establishment of dormancy of the legume seed. Frontiers in Plant Science 5:1-19. https://doi.org/10.3389/fpls.2014.00351.
Tang, L., C. Cheng, K. Wan, R. Li, D. Wang, Y. Tao, J. Pan, J. Xie, and F. Chen. 2014. Impact of fertilizing pattern on the biodiversity of a weed community and wheat growth. Plos One 9:e84370. https://doi.org/10.1371/journal.pone.0084370.
Urretavizcaya, M. F., P. L. Peri, L. H. Monelos, H. Arriola, M. F. Oyharçabal, L. Contardi, M. Muñoz, E. Sepúlveda, and G. E. Defossé. 2018. Condiciones de suelo y vegetación en tres bosques quemados de Nothofagus pumilio en Argentina y experiencias para su restauración activa. Ecología Austral 28:383-399. https://doi.org/10.25260/EA.18.28.2.0.480.
Van Assche, J. A., K. L. A. Debucquoy, and W. A. F. Rommens. 2003. Seasonal cycles in the germination capacity of buried seeds of some Leguminosae (Fabaceae). New Phytologist 158:315-323. https://doi.org/10.1046/j.1469-8137.2003.00744.x.
Varela, S. A. 2005. Efecto del compost de biosólidos sobre la recuperación de un bosque quemado de Nothofagus pumilio (lenga). Tesis de licenciatura. Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche. Argentina. Pp. 79.
Varela, S. A., M. E. Gobbi, and F. Laos. 2006. Banco de semillas de un bosque quemado de Nothofagus pumilio: efecto de la aplicación de compost de biosólidos. Ecología Austral 16:63-78.
Varela, S. A., M. E. Gobbi, and F. Laos. 2011. Can biosolids compost improve, in the short term, native vegetation and soils fertility in burned Nothofagus pumilio forest in Patagonia, Argentina? Bosque 32:267-278. https://doi.org/10.4067/S0717-92002011000300008.
Veblen, T. T., A. Holz, J. Paritsis, E. Raffaele, T. Kitzberger, and M. Blackhall. 2011. Adapting to global environmental change: what role for disturbance ecology? Austral Ecology 36:891-903. https://doi.org/10.1111/j.1442-9993.2010.02236.x.
Walter, I., and R. Calvo. 2009. Biomass production and development of native vegetation following biowaste amendment of a degraded, semi-arid soil. Arid land research and management 23:297-310. https://doi.org/10.1080/15324980903231827.
Wang, F., Z. Li, H. Xia, B. Zou, N. Li, J. Liu, and W. Zhu. 2010. Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China. Soil Science and Plant Nutrition 56:297-306. https://doi.org/10.1111/j.1747-0765.2010.00454.x.
Wardle, D. A., and D. A. Peltzer. 2007. Aboveground-belowground linkages, ecosystem development, and ecosystem restoration. Pp. 45-68 in L. R. Walker, J. Walker and R. J. Hobbs (eds.). Linking restoration and ecological succession. Springer, New York, New York, USA. https://doi.org/10.1007/978-0-387-35303-6_3.
Wiggers, M. S., L. K. Kirkman, R. S. Boyd, and J. K. Hiers. 2013. Fine-scale variation in surface fire environment and legume germination in the longleaf pine ecosystem. Forest Ecology and Management 310:54-63. https://doi.org/10.1016/j.foreco.2013.07.030.
Zendejas, H. S. L., M. S. Oba, A. S. Oba, E. G. Gallegos, and J. L. G. Estrada. 2015. A bioeconomic approach for the production of biofertilizers and their influence on faba bean (Vicia faba L) productivity. Journal of Natural Sciences 3:75-91. https://doi.org/10.15640/jns.v3n2a5.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Melisa Blackhall, Ana Villán, Miriam E. Gobbi
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Las/os autoras/es conservan sus derechos de autoras/es: 1) cediendo a la revista el derecho a su primera publicación, y 2) registrando el artículo publicado con una Licencia de Atribución de Creative Commons (CC-BY 4.0), lo que permite a autoras/es y terceros verlo y utilizarlo siempre que mencionen claramente su origen (cita o referencia incluyendo autoría y primera publicación en esta revista). Las/os autores/as pueden hacer otros acuerdos de distribución no exclusiva siempre que indiquen con claridad su origen, así como compartir y divulgar ampliamente la versión publicada de su trabajo.