Biotransformación de antibióticos en humedales artificiales: Rol de la interacción entre microorganismos y macrófitas

Autores/as

  • Ingrid Maldonado Programa de Doctorado en Ciencia, Tecnología y Medio Ambiente, Escuela de Posgrado, Universidad Nacional del Altiplano de Puno. Puno, Perú
  • Nagamani Balagurusamy Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila. Torreón, México

DOI:

https://doi.org/10.25260/EA.22.32.3.0.1792

Palabras clave:

Biodegradación, fitorremediación, macrófitas, remediación, remoción, rizosfera

Resumen

La cantidad de antibióticos vertidos en ecosistemas acuáticos va en aumento y repercute negativamente en la salud del ambiente y del ser humano. Entre los métodos que se usan para removerlos está la fitorremediación, una metodología basada en usar plantas y microorganismos de la rizosfera para remover contaminantes del medio. La tecnología que utiliza esta estrategia es el humedal artificial, compuesto principalmente por plantas, agua y sustrato. El objetivo de esta revisión es colectar, organizar y analizar la información disponible acerca de la interacción entre bacterias y macrófitas en el proceso de remoción de antibióticos. Inicialmente, se describe la contaminación por antibióticos en los cuerpos de agua, así como los efectos tóxicos en los seres vivos, y se mencionan las características físicas y químicas de los antibióticos que influyen en su posibilidad de remoción. Asimismo, se describe el proceso de biodegradación de antibióticos por las bacterias y la interacción planta-bacteria que se da sobre todo a nivel de las raíces de la planta (ectorizosfera, endorizosfera y el rizoplano), proceso responsable de la remoción de compuestos antibióticos del medio acuático. Este trabajo busca contribuir a lograr un mejor entendimiento del proceso de interacción planta-bacteria, a fin de ayudar a optimizar el diseño de un humedal para tratar los residuos de antibióticos del medio acuático, incluyendo una revisión exhaustiva del conocimiento actual.

Citas

Acevedo-Barrios, R. L., C. A. Severiche-Sierra, and J. D. C. Jaimes-Morales. 2015. Bacterias resistentes a antibióticos en ecosistemas acuáticos. Producción + Limpia 10:160-172. https://doi.org/10.22507/pml.v10n2a14.

Afzal, M., Q. M. Khan, and A. Sessitsch. 2014. Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232-242. https://doi.org/10.1016/j.chemosphere.2014.06.078.

Alexandrino, D. A. M., A. P. Mucha, C. M. Almeida, W. Gao, Z. Jia, and M. F. Carvalho. 2017. Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics. Science of the Total Environment 581-582:359-368. https://doi.org/10.1016/j.scitotenv.2016.12.141.

Archundia, D., C. Duwig, F. Lehembre, S. Chiron, M. C. Morel, B. Prado, M. Bourdat-Deschamps, E. Vince, G. F. Aviles, and J. M. F. Martins. 2017. Antibiotic pollution in the Katari subcatchment of the Titicaca Lake: Major transformation products and occurrence of resistance genes. Science of the Total Environment 576:671-682. https://doi.org/10.1016/j.scitotenv.2016.10.129.

Arslan, M., M. Santoni, A. Wiessner, and T. Neu. 2017. Dysbiosis in plant-endophyte partnership: repeated short exposures of sulfamethoxazole and trimethoprim at micro-concentrations can disturb the microbial community in soft rush, Juncus effusus. Proceeding of the first International Conference on Microbial Ecotoxicology. Frontiers, Lyon, France.

Barra, A., E. Topp, and P. Grenni. 2015. Pharmaceuticals in the environment: Biodegradation and effects on natural microbial communities. A review. Journal of Pharmaceutical and Biomedical Analysis 106:25-36. https://doi.org/10.1016/j.jpba.2014.11.040.

Bashir, O., K. Khan, K. R. Hakeem, N. A. Mir, G. H. Rather, and R. Mohiuddin. 2016. Soil Microbe Diversity and Root Exudates as Important Aspects of Rhizosphere Ecosystem. Pp. 337-357 en K. R. Hakeem and M. S. Akhtar (eds.). Plant, Soil and Microbes: Volume 2: Mechanisms and Molecular Interactions. Springer, Switzerland. https://doi.org/10.1007/978-3-319-29573-2_15.

Berglund, B., G. A. Khan, S. E. B. Weisner, P. M. Ehde, J. Fick, and P. E. Lindgren. 2014. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes. Science of the Total Environment 476-477:29-37. https://doi.org/10.1016/j.scitotenv.2013.12.128.

Bôto, M., C. M. R. Almeida, and A. P. Mucha. 2016. Potential of constructed wetlands for removal of antibiotics from saline aquaculture effluents. Water (Switzerland) 8:1-14. https://doi.org/10.3390/w8100465.

Carvalho, I. T., and L. Santos. 2016. Antibiotics in the aquatic environments: A review of the European scenario. Environment International 94:736-757. https://doi.org/10.1016/j.envint.2016.06.025.

Carvalho, P., M. C. P. Basto, and C. M. R. Almeida. 2012. Potential of Phragmites australis for the removal of veterinary pharmaceuticals from aquatic media. Bioresource Technology 116:497-501. https://doi.org/10.1016/j.biortech.2012.03.066.

Carvalho, P. N., J. L. Araújo, A. P. Mucha, M. C. P. Basto, and C. M. R. Almeida. 2013. Potential of constructed wetlands microcosms for the removal of veterinary pharmaceuticals from livestock wastewater. Bioresource Technology 134:412-416. https://doi.org/10.1016/j.biortech.2013.02.027.

Carvalho, P. N., M. C. P. Basto, C. M. R. Almeida, and H. Brix. 2014. A review of plant–pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environmental Science and Pollution Research 21:11729-11763. https://doi.org/10.1007/s11356-014-2550-3.

Cha, J., and K. H. Carlson. 2019. Biodegradation of veterinary antibiotics in lagoon waters. Process Safety and Environmental Protection 127:306-313. https://doi.org/10.1016/j.psep.2019.04.009.

Chen, J., T. Tong, X. Jiang, and S. Xie. 2020. Biodegradation of sulfonamides in both oxic and anoxic zones of vertical flow constructed wetland and the potential degraders. Environmental Pollution 265(B):115040. https://doi.org/10.1016/j.envpol.2020.115040.

Chen, J., and S. Xie. 2018. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms. Science of the Total Environment 640-641:1465-1477. https://doi.org/10.1016/j.scitotenv.2018.06.016.

Cheng, D., H. Hao Ngo, W. Guo, S. Wang Chang, D. Duc Nguyen, Y. Liu, X. Zhang, X. Shan, and Y. Liu. 2020. Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater: A review. Bioresource Technology 299:122654. https://doi.org/10.1016/j.biortech.2019.122654.

Choudhary, M., C. Prakash, R. Prakash, V. Singh, T. Mondal, and J. Bisht. 2018. Role of Rhizospheric Microbes in Soil. Pp. 1-46 en V. S. Meena (eds.). Role of Rhizospheric Microbes in Soil: Volume 2: Nutrient Management and Crop Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-13-0044-8.

Clairmont, L. K., K. J. Stevens, and R. M. Slawson. 2019. Site-specific differences in microbial community structure and function within the rhizosphere and rhizoplane of wetland plants is plant species dependent. Rhizosphere 9:56-68. https://doi.org/10.1016/j.rhisph.2018.11.006.

Clairmont, L. K., K. J. Stevens, and R. M. Slawson. 2020. Differential response of rhizoplane, rhizosphere and water wetland bacterial communities to short-term phosphorus loading in lab scale mesocosms. Applied Soil Ecology 154:103598. https://doi.org/10.1016/j.apsoil.2020.103598.

Danner, M. C., A. Robertson, V. Behrends, and J. Reiss. 2019. Antibiotic pollution in surface fresh waters: Occurrence and effects. Science of the Total Environment 664:793-804. https://doi.org/10.1016/j.scitotenv.2019.01.406.

Díaz-Cruz, M. S., and D. Barceló. 2007. Analysis of antibiotics in aqueous samples. Pp. 61-93 en M. Petrović and D. Barceló (eds). Comprehensive Analytical Chemistry vol. 50. Elsevier. https://doi.org/10.1016/S0166-526X(07)50002-4.

Dordio, A. V., and A. J. P. Carvalho. 2013. Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. Journal of Hazardous Materials 252-253:272-292. https://doi.org/10.1016/j.jhazmat.2013.03.008.

Duwig, C., D. Archundia, F. Lehembre, L. Spadini, M. C. Morel, G. Uzu, J. Chincheros, R. Cortez, and J. M. F. Martins. 2014. Impacts of Anthropogenic Activities on the Contamination of a Sub Watershed of Lake Titicaca. Are Antibiotics a Concern in the Bolivian Altiplano? Procedia Earth and Planetary Science 10:370-375. https://doi.org/10.1016/j.proeps.2014.08.062.

Emy, M., K. Helwig, C. Hunter, J. Roberts, E. Lucas, L. Helena, and G. Coelho. 2020. Amoxicillin removal by pre-denitrification membrane bioreactor (A / O- MBR): Performance evaluation, degradation by-products, and antibiotic resistant bacteria. Ecotoxicology and Environmental Safety 192:110258. https://doi.org/10.1016/j.ecoenv.2020.110258.

Fahid, M., M. Arslan, G. Shabir, S. Younus, T. Yasmeen, M. Rizwan, K. Siddique, S. R. Ahmad, R. Tahseen, S. Iqbal, S. Ali, and M. Afzal. 2020. Phragmites australis in combination with hydrocarbons degrading bacteria is a suitable option for remediation of diesel-contaminated water in floating wetlands. Chemosphere 240:124890. https://doi.org/10.1016/j.chemosphere.2019.124890.

Fernandes, J. P., C. M. R. Almeida, A. C. Pereira, I. L. Ribeiro, I. Reis, P. Carvalho, M. C. P. Basto, and A. P. Mucha. 2015. Microbial community dynamics associated with veterinary antibiotics removal in constructed wetlands microcosms. Bioresource Technology 182:26-33. https://doi.org/10.1016/j.biortech.2015.01.096.

Ferreira, R., A. Ribeiro, and N. Couto. 2017. Remediation of Pharmaceutical and Personal Care Products (PPCPs) in Constructed Wetlands: Applicability and New Perspectives. Pp. 277-292 en N. L. A. Ansari, S. G. Sarvajeet, G. Ritu and L. R. Guy (eds.). Phytoremediation: Management of Environmental Contaminants. Springer, Lisboa, Portugal. https://doi.org/10.1007/978-3-319-52381-1.

Furuya, E. Y., and F. D. Lowy. 2006. Antimicrobial-resistant bacteria in the community setting. Nature Reviews 4:36-45. https://doi.org/10.1038/nrmicro1325.

García-Rodríguez, A., V. Matamoros, C. Fontàs, and V. Salvadó. 2015. The influence of Lemna sp. and Spirogyra sp. on the removal of pharmaceuticals and endocrine disruptors in treated wastewaters. International Journal of Environmental Science and Technology 12:2327-2338. https://doi.org/10.1007/s13762-014-0632-x.

Ginebreda, A., I. Muñoz, M. López, D. Alda, R. Brix, J. López-doval, and D. Barceló. 2010. Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environment International 36:153-162. https://doi.org/10.1016/j.envint.2009.10.003.

Gomes, M. P., J. C. M. de Brito, M. M. L. Carvalho Carneiro, M. R. Ribeiro da Cunha, Q. S. García, and C. C. Figueredo. 2018. Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin: Impacts on biofertilization. Environmental Pollution 232:293-299. https://doi.org/10.1016/j.envpol.2017.09.054.

Harrabi, M., D. A. M. Alexandrino, F. Aloulou, B. Elleuch, B. Liu, Z. Jia, C. M. R. Almeida, A. P. Mucha, and M. F. Carvalho. 2019. Biodegradation of oxytetracycline and enrofloxacin by autochthonous microbial communities from estuarine sediments. Science of the Total Environment 648:962-972. https://doi.org/10.1016/j.scitotenv.2018.08.193.

Hijosa-Valsero, M., G. Fink, M. P. Schlüsener, R. Sidrach-Cardona, J. Martín-Villacorta, T. Ternes, and E. Bécares. 2011. Removal of antibiotics from urban wastewater by constructed wetland optimization. Chemosphere 83:713-719. https://doi.org/10.1016/j.chemosphere.2011.02.004.

Huang, X., J. Zheng, C. Liu, L. Liu, Y. Liu, and H. Fan. 2017. Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: Effect of hydraulic flow direction and substrate type. Chemical Engineering Journal 308:692-699. https://doi.org/10.1016/j.cej.2016.09.110.

Huang, Y.-H., Y. Liu, P. Du, L.-J. Zeng, C.-H. Mo, Y.-W. Li, H. Lü, and Q.-Y. Cai. 2019. Occurrence and distribution of antibiotics and antibiotic resistant genes in water and sediments of urban rivers with black-odor water in Guangzhou, South China. Science of The Total Environment 670:170-180. https://doi.org/10.1016/j.scitotenv.2019.03.168.

Hussain, Z., M. Arslan, M. H. Malik, M. Mohsin, S. Iqbal, and M. Afzal. 2018. Integrated perspectives on the use of bacterial endophytes in horizontal flow constructed wetlands for the treatment of liquid textile effluent: Phytoremediation advances in the field. Journal of Environmental Management 224:387-395. https://doi.org/10.1016/j.jenvman.2018.07.057.

Ijaz, A., A. Imran, M. Anwar ul Haq, Q. M. Khan, and M. Afzal. 2016. Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant and Soil 405:179-195. https://doi.org/10.1007/s11104-015-2606-2.

Jafari Ozumchelouei, E., A. H. Hamidian, Y. Zhang, and M. Yang. 2019. Physicochemical properties of antibiotics: A review with an emphasis on detection in the aquatic environment. Water Environment Research 92:177-188. https://doi.org/10.1002/wer.1237.

Jiang, B., A. Li, D. Cui, R. Cai, F. Ma, and Y. Wang. 2014. Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium. Applied Microbiology and Biotechnology 98:4671-4681. https://doi.org/10.1007/s00253-013-5488-3.

Karthik, C., M. Oves, M. Khan, R. Sharma, P. I. Arulselvi, and H. Qari. 2017. Plant-Bacteria Partnerships: A Major Pollutant-Remediation Approach. Pp. 1-31 en A. A. Naser (eds.). Chemical Pollution Control with Microorganisms. Nova Science Publisher, Portugal.

Knöppel, A., J. Nasvall, and D. Andersson. 2017. Evolution of antibiotic resistance without antibiotic exposure. Antimicrobial Agents and Chemotherapy 61:e01495-17. https://doi.org/10.1128/AAC.01495-17.

Kumar, M., S. Jaiswal, K. K. Sodhi, P. Shree, D. K. Singh, P. K. Agrawal, and P. Shukla. 2019. Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance. Environment International 124:448-461. https://doi.org/10.1016/j.envint.2018.12.065.

Kümmerer, K. 2009. Antibiotics in the aquatic environment - A review - Part I. Chemosphere 75:417-434. https://doi.org/10.1016/j.chemosphere.2008.11.086.

Kurade, M. B., Y. H. Ha, J. Q. Xiong, S. P. Govindwar, M. Jang, and B. H. Jeon. 2021. Phytoremediation as a green biotechnology tool for emerging environmental pollution: A step forward towards sustainable rehabilitation of the environment. Chemical Engineering Journal 415:129040. https://doi.org/10.1016/j.cej.2021.129040.

Kurade, M. B., J. Q. Xiong, S. P. Govindwar, H. S. Roh, G. D. Saratale, B. H. Jeon, and H. Lim. 2019. Uptake and biodegradation of emerging contaminant sulfamethoxazole from aqueous phase using Ipomoea aquatica. Chemosphere 225:696-704. https://doi.org/10.1016/j.chemosphere.2019.03.086.

Lei, K., Y. Zhu, W. Chen, H. Y. Pan, Y. X. Cao, X. Zhang, B. B. Guo, A. Sweetman, C. Y. Lin, W. Ouyang, M. C. He, and X. T. Liu. 2019. Spatial and seasonal variations of antibiotics in river waters in the Haihe River Catchment in China and ecotoxicological risk assessment. Environment International 130:104919. https://doi.org/10.1016/j.envint.2019.104919.

Leng, Y., J. Bao, G. Chang, H. Zheng, X. Li, J. Du, D. Snow, and X. Li. 2016. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1. Journal of Hazardous Materials 318:125-133. https://doi.org/10.1016/j.jhazmat.2016.06.053.

Li, Y., G. Zhu, W. J. Ng, and S. K. Tan. 2014. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Science of the Total Environment 468-469:908-932. https://doi.org/10.1016/j.scitotenv.2013.09.018.

Liang, B., D. Kong, M. Qi, H. Yun, Z. Li, K. Shi, E. Chen, A. S. Vangnai, and A. Wang. 2019. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor. Frontiers of Environmental Science and Engineering 13:1-10. https://doi.org/10.1007/s11783-019-1168-6.

Liang, D., and Y. Hu. 2019. Simultaneous sulfamethoxazole biodegradation and nitrogen conversion by Achromobacter sp. JL9 using with different carbon and nitrogen sources. Bioresource Technology 2093:122061. https://doi.org/10.1016/j.biortech.2019.122061.

Liu, L., C. Liu, J. Zheng, X. Huang, Z. Wang, Y. Liu, and G. Zhu. 2013. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands. Chemosphere 91:1088-1093. https://doi.org/10.1016/j.chemosphere.2013.01.007.

Liu, X., X. Guo, Y. Liu, S. Lu, B. Xi, J. Zhang, Z. Wang, and B. Bi. 2019. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: Performance and microbial response. Environmental Pollution 254:112996. https://doi.org/10.1016/j.envpol.2019.112996.

Lu, X., Y. Gao, J. Luo, S. Yan, Z. Rengel, and Z. Zhang. 2014. Interaction of veterinary antibiotic tetracyclines and copper on their fates in water and water hyacinth (Eichhornia crassipes). Journal of Hazardous Materials 280:389-398. https://doi.org/10.1016/j.jhazmat.2014.08.022.

Ma, J., Y. Cui, W. Zhang, C. Wang, and A. Li. 2019. Fate of antibiotics and the related antibiotic resistance genes during sludge stabilization in sludge treatment wetlands. Chemosphere 224:502-508. https://doi.org/10.1016/j.chemosphere.2019.02.168.

Man, Y., J. Wang, N. F. Tam, X. Wan, W. Huang, Y. Zheng, J. Tang, R. Tao, and Y. Yang. 2020. Responses of rhizosphere and bulk substrate microbiome to wastewater-borne sulfonamides in constructed wetlands with different plant species. Science of the Total Environment 706:135955. https://doi.org/10.1016/j.scitotenv.2019.135955.

Martin, B. C., S. J. George, C. A. Price, M. H. Ryan, and M. Tibbett. 2014. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions. Science of the Total Environment 472:642-653. https://doi.org/10.1016/j.scitotenv.2013.11.050.

Martínez-Alcalá, I., J. Soto, and A. Lahora. 2020. Antibióticos como contaminantes emergentes. Riesgo ecotoxicológico y control en aguas residuales y depuradas. Revista Científica de Ecología y Medio Ambiente 29:2070. https://doi.org/10.7818/ECOS.2070.

Matamoros, V., L. X. Nguyen, C. A. Arias, V. Salvadó, and H. Brix. 2012. Evaluation of aquatic plants for removing polar microcontaminants: A microcosm experiment. Chemosphere 88:1257-1264. https://doi.org/10.1016/j.chemosphere.2012.04.004.

Müller, E., W. Schüssler, H. Horn, and H. Lemmer. 2013. Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source. Chemosphere 92:969-978. https://doi.org/10.1016/j.chemosphere.2013.02.070.

Nazir, N., A. N. Kamili, M. Y. Zargar, I. Khan, D. Shah, J. A. Parray, and S. Tyub. 2016. Effect of Root Exudates on Rhizosphere Soil Microbial Communities. Journal of Research and Development 16:88-95

Nitzan, Y., E. B. Deutsch, and I. Pechatnikov. 2002. Diffusion of β-lactam antibiotics through oligomeric or monomeric porin channels of some gram-negative bacteria. Current Microbiology 45:446-455. https://doi.org/10.1007/s00284-002-3778-6.

Oliveira, G. H. D., A. J. Santos-Neto, and M. Zaiat. 2016. Evaluation of sulfamethazine sorption and biodegradation by anaerobic granular sludge using batch experiments. Bioprocess and Biosystems Engineering 39:115-124. https://doi.org/10.1007/s00449-015-1495-3.

Pi, S., A. Li, D. Cui, Z. Su, L. Feng, F. Ma, and J. Yang. 2018. Biosorption behavior and mechanism of sulfonamide antibiotics in aqueous solution on extracellular polymeric substances extracted from Klebsiella sp. J1. Bioresource Technology 272:346-350. https://doi.org/10.1016/j.biortech.2018.10.054.

PubChemDatabase (2021). National Center for Biotechnology Information. URL: pubchem.ncbi.nlm.nih.gov.

Reinhold, D., S. Vishwanathan, J. J. Park, D. Oh, and F. Michael Saunders. 2010. Assessment of plant-driven removal of emerging organic pollutants by duckweed. Chemosphere 80:687-692. https://doi.org/10.1016/j.chemosphere.2010.05.045.

Reis, A. C., M. Č. Van, Y. Liu, M. Lenz, T. Hettich, B. A. Kolvenbach, P. F. Corvini, and O. C. Nunes. 2018. Biodegradation of sulfamethoxazole by a bacterial consortium of Achromobacter denitrificans PR1 and Leucobacter sp. GP. Applied Microbiology and Biotechnology 102:10299-10314. https://doi.org/10.1007/s00253-018-9411-9.

Reis, P. J. M., A. C. Reis, B. Ricken, B. A. Kolvenbach, C. M. Manaia, P. F. X. Corvini, and O. C. Nunes. 2014. Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1. Journal of Hazardous Materials 280:741-749. https://doi.org/10.1016/j.jhazmat.2014.08.039.

Ricken, B., P. F. X. Corvini, D. Cichocka, M. Parisi, M. Lenz, D. Wyss, P. M. Martínez-Lavanchy, J. A. Müller, P. Shahgaldian, L. G. Tulli, H. P. E. Kohler, and B. A. Kolvenbacha. 2013. Ipso-hydroxylation and subsequent fragmentation: A novel microbial strategy to eliminate sulfonamide antibiotics. Applied and Environmental Microbiology 79:5550-5558. https://doi.org/10.1128/AEM.00911-13.

Ricken, B., O. Fellmann, H. P. E. Kohler, A. Schäffer, P. F. X. Corvini, and B. A. Kolvenbach. 2015. Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 - elucidating the downstream pathway. New Biotechnology 32:710-715. https://doi.org/10.1016/j.nbt.2015.03.005.

Rico, A., W. Zhao, F. Gillissen, M. Lürling, and P. J. Van den Brink. 2018. Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin. Ecotoxicology and Environmental Safety 148:228-236. https://doi.org/10.1016/j.ecoenv.2017.10.010.

Rosas, I., E. Salinas, L. Martínez, A. Cruz-Còrdova, B. Gonzàlez-Pedrajo, N. Espinosa, and C. F. Amábile-Cuevas. 2015. Characterization of Escherichia coli isolates from an urban lake receiving water from a wastewater treatment plant in Mexico City: Fecal pollution and antibiotic resistance. Current Microbiology 71:490-495. https://doi.org/10.1007/s00284-015-0877-8.

Santos, F., C. M. R. de Almeida, I. Ribeiro, A. C. Ferreira, and A. P. Mucha. 2019a. Removal of veterinary antibiotics in constructed wetland microcosms - Response of bacterial communities. Ecotoxicology and Environmental Safety 169:894-901. https://doi.org/10.1016/j.ecoenv.2018.11.078.

Santos, F., A. P. Mucha, D. A. M. Alexandrino, C. M. R. Almeida, and M. F. Carvalho. 2019b. Biodegradation of enrofloxacin by microbial consortia obtained from rhizosediments of two estuarine plants. Journal of Environmental Management 231:1145-1153. https://doi.org/10.1016/j.jenvman.2018.11.022.

Shao, B., D. Chen, J. Zhang, Y. Wu, and C. Sun. 2009. Determination of 76 pharmaceutical drugs by liquid chromatography-tandem mass spectrometry in slaughterhouse wastewater. Journal of Chromatography A 1216:8312-8318. https://doi.org/10.1016/j.chroma.2009.08.038.

Shao, S., Y. Hu, J. Cheng, and Y. Chen. 2019. Biodegradation mechanism of tetracycline (TEC) by strain Klebsiella sp. SQY5 as revealed through products analysis and genomics. Ecotoxicology and Environmental Safety 185:109676. https://doi.org/10.1016/j.ecoenv.2019.109676.

Shi, H., J. Ni, T. Zheng, X. Wang, C. Wu, and Q. Wang. 2019. Remediation of wastewater contaminated by antibiotics. A review. Environmental Chemistry Letters 18:345-360. https://doi.org/10.1007/s10311-019-00945-2.

Shi, Y., H. Lin, J. Ma, R. Zhu, W. Sun, X. Lin, J. Zhang, H. Zheng, and X. Zhang. 2021. Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16. Journal of Hazardous Materials 403:123996. https://doi.org/10.1016/j.jhazmat.2020.123996.

Shitan, N., and K. Yazaki. 2020. Dynamism of vacuoles toward survival strategy in plants. BBA - Biomembranes 1862:183127. https://doi.org/10.1016/j.bbamem.2019.183127.

Tai, Y., N. F. Y. Tam, Y. Dai, Y. Yang, J. Lin, R. Tao, Y. Yang, J. Wang, R. Wang, W. Huang, and X. Xu. 2017. Assessment of rhizosphere processes for removing water-borne macrolide antibiotics in constructed wetlands. Plant and Soil 419:489-502. https://doi.org/10.1007/s11104-017-3359-x.

Tharp, R., K. Westhelle, and S. Hurley. 2019. Macrophyte performance in floating treatment wetlands on a suburban stormwater pond: Implications for cold climate conditions. Ecological Engineering 136:152-159. https://doi.org/10.1016/j.ecoleng.2019.06.011.

Trapp, S. 2009. Bioaccumulation of Polar and Ionizable Compounds in Plants. Pp. 299-353 en J. Devillers (eds.). Ecotoxicology Modeling, Emerging Topics in Ecotoxicology: Principles, Approaches and Perspectives. Springer, Boston, New York, USA. https://doi.org/10.1007/978-1-4419-0197-2_11.

Wang, G., Q. Zhang, J. Li, X. Chen, Q. Lang, and S. Kuang. 2019a. Combined effects of erythromycin and enrofloxacin on antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris. Aquatic Toxicology 212:138-145. https://doi.org/10.1016/j.aquatox.2019.05.004.

Wang, S., Y. Cui, A. Li, D. Wang, W. Zhang, and Z. Chen. 2019b. Seasonal dynamics of bacterial communities associated with antibiotic removal and sludge stabilization in three different sludge treatment wetlands. Journal of Environmental Management 240:231-237. https://doi.org/10.1016/j.jenvman.2019.03.092.

Wang, Y. F., R. P. Dick, N. Lorenz, and N. Lee. 2019c. Interactions and responses of n-damo archaea, n-damo bacteria and anammox bacteria to various electron acceptors in natural and constructed wetland sediments. International Biodeterioration and Biodegradation 144:104749. https://doi.org/10.1016/j.ibiod.2019.104749.

Weber, K. P., M. R. Mitzel, R. M. Slawson, and R. L. Legge. 2011. Effect of ciprofloxacin on microbiological development in wetland mesocosms. Water Research 45:3185-3196. https://doi.org/10.1016/j.watres.2011.03.042.

Wright, G. D. 2010. Q and A: Antibiotic resistance: where does it come from and what can we do about it? BMC Biology 8:123. https://doi.org/10.1186/1741-7007-8-123.

Wu, H., J. Zhang, H. H. Ngo, W. Guo, Z. Hu, S. Liang, J. Fan, and H. Liu. 2015. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology 175:594-601. https://doi.org/10.1016/j.biortech.2014.10.068.

Xiong, J. Q., S. Govindwar, M. B. Kurade, K. J. Paeng, H. S. Roh, M. A. Khan, and B. H. Jeon. 2019. Toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus. Chemosphere 218:551-558. https://doi.org/10.1016/j.chemosphere.2018.11.146.

Xu, W., W. Yan, X. Li, Y. Zou, X. Chen, W. Huang, L. Miao, R. Zhang, G. Zhang, and S. Zou. 2013. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: Concentrations, mass loading and ecological risks. Environmental Pollution 182:402-407. https://doi.org/10.1016/j.envpol.2013.08.004.

Xue, W., F. Li, and Q. Zhou. 2019. Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell. Bioresource Technology 289:121632. https://doi.org/10.1016/j.biortech.2019.121632.

Yang, C. W., W. C. Hsiao, and B. V. Chang. 2016. Biodegradation of sulfonamide antibiotics in sludge. Chemosphere 150:559-565. https://doi.org/10.1016/j.chemosphere.2016.02.064.

Yu, T. H., A. Y. C. Lin, S. C. Panchangam, P. K. A. Hong, P. Y. Yang, and C. F. Lin. 2011. Biodegradation and bio-sorption of antibiotics and non-steroidal anti-inflammatory drugs using immobilized cell process. Chemosphere 84:1216-1222. https://doi.org/10.1016/j.chemosphere.2011.05.045.

Zhang, R., G. Zhang, Q. Zheng, J. Tang, Y. Chen, W. Xu, Y. Zou, and X. Chen. 2012. Occurrence and risks of antibiotics in the Laizhou Bay, China: Impacts of river discharge. Ecotoxicology and Environmental Safety 80:208-215. https://doi.org/10.1016/j.ecoenv.2012.03.002.

Zhao, S., X. Liu, D. Cheng, G. Liu, B. Liang, B. Cui, and J. Bai. 2016. Temporal-spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China. Science of the Total Environment 569-570:1350-1358. https://doi.org/10.1016/j.scitotenv.2016.06.216.

Zhi, D., D. Yang, Y. Zheng, Y. Yang, Y. He, L. Luo, and Y. Zhou. 2019. Current progress in the adsorption, transport and biodegradation of antibiotics in soil. Journal of Environmental Management 251:109598. https://doi.org/10.1016/j.jenvman.2019.109598.

Zhou, T., L. Cao, Q. Zhang, Y. Liu, S. Xiang, T. Liu, and R. Ruan. 2021. Effect of chlortetracycline on the growth and intracellular components of Spirulina platensis and its biodegradation pathway. Journal of Hazardous Materials 413:125310. https://doi.org/10.1016/j.jhazmat.2021.125310.

Zumstein, M. T., and D. E. Helbling. 2019. Biotransformation of antibiotics: Exploring the activity of extracellular and intracellular enzymes derived from wastewater microbial communities. Water Research 155:115-123. https://doi.org/10.1016/j.watres.2019.02.024.

Biotransformación de antibióticos en humedales artificiales: Rol de la interacción entre microorganismos y macrófitas

Descargas

Publicado

2022-11-07

Cómo citar

Maldonado, I., & Balagurusamy, N. (2022). Biotransformación de antibióticos en humedales artificiales: Rol de la interacción entre microorganismos y macrófitas. Ecología Austral, 1054–1069. https://doi.org/10.25260/EA.22.32.3.0.1792

Número

Sección

Revisión