Esta es un versión antigua publicada el 2022-12-10. Consulte la versión más reciente.

¿De dónde viene y a dónde va el agua de las ciudades? Base de datos integrada para 243 centros urbanos argentinos

Autores/as

  • Ana L. Llanes Grupo de Estudios Ambientales, Instituto de Matemática Aplicada San Luis, CONICET, Universidad Nacional de San Luis. San Luis, Argentina
  • María Poca Grupo de Estudios Ambientales, Instituto de Matemática Aplicada San Luis, CONICET, Universidad Nacional de San Luis. San Luis, Argentina https://orcid.org/0000-0001-9160-1036
  • Yohana G. Jimenez Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Tucumán, Argentina
  • George Castellanos Grupo de Estudios Ambientales, Instituto de Matemática Aplicada San Luis, CONICET, Universidad Nacional de San Luis. San Luis, Argentina
  • Bárbara M. Gómez Subgerencia Centro de Tecnología del Uso del Agua, Instituto Nacional del Agua (SCTUA-INA)
  • Mercedes Marchese Instituto Nacional de Limnología (INALI-CONICET-UNL)
  • Nerina B. Lana Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA, CONICET)
  • Miguel Pascual Instituto de Investigaciones Marinas y Costeras (CONICET-Universidad Nacional de Mar del Plata)|
  • Ricardo Albariño Instituto de Investigaciones en Biodiversidad y Medio Ambiente, INIBIOMA, Universidad Nacional del Comahue-CONICET
  • María P. Barral INTA, Estación Experimental Agropecuaria Balcarce. IPADS Balcarce (INTA-CONICET)
  • Jesús Pascual Instituto de Investigaciones Marinas y Costeras (CONICET-Universidad Nacional de Mar del Plata)
  • Araceli Clavijo Instituto de Investigaciones en Energía No Convencional (INENCO-CONICET) - Universidad Nacional de Salta. Argentina
  • Boris Díaz Instituto Nacional de Tecnología Agropecuaria (INTA-CR Patagonia Sur)
  • Natalia Pessacg Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET. Puerto Madryn, Argentina
  • Esteban G. Jobbágy Grupo de Estudios Ambientales, Instituto de Matemática Aplicada San Luis, CONICET, Universidad Nacional de San Luis. San Luis, Argentina

DOI:

https://doi.org/10.25260/EA.22.32.3.0.2028

Palabras clave:

agua potable, Argentina, efluentes, Hidrosistemas Urbanos, servicios ecosistémicos hídricos, trasvase de agua

Resumen

Las ciudades dependen de distintos ecosistemas que les proveen servicios. Para el caso de la provisión de agua potable y la disposición de aguas servidas en las ciudades argentinas, el reconocimiento de esto aún es incompleto y fragmentado. Aquí presentamos la primera base de datos que mapea y clasifica las fuentes de suministro de agua y destinos de los efluentes de todas las ciudades argentinas con más 20000 habitantes (en 2010). A partir de reportes existentes, noticias periodísticas e información satelital se registraron en 243 ciudades los puntos de toma y vertido de aguas, junto a otra infraestructura asociada. Se encontró que 30.5, 17.5 y 12.6% de la población se abastece sólo de grandes ríos transfronterizos, agua subterránea y ríos y arroyos internos, respectivamente, con 25.2% abastecido por fuentes mixtas. Las ciudades que están conectadas a las redes públicas de saneamiento recurren para su disposición sobre todo a ríos y arroyos internos (26.6%); sin embargo, de la población urbana que no está conectada a la red cloacal, una proporción elevada dispone sus vertidos en acuíferos libres. La mayoría de las ciudades argentinas no devuelven las aguas de saneamiento al mismo sistema que las provee, y predominan los trasvases desde fuentes subterráneas hacia ríos y arroyos internos. La base de datos evidencia la contrastante ‘presión efluente’ (relación población/caudal del sistema receptor) entre ciudades vinculadas a grandes ríos (e.g., la cuenca del Paraná, con 273 habitantes.m-3.s-1) y a cuencas internas (e.g., la cuenca de Mar Chiquita, con 16141 habitantes.m-3.s-1). Esta base de datos, abierta para la consulta y actualización, visibiliza la conexión espacial e hidrológica entre las ciudades y la red hidrográfica, y contribuye a mejorar la seguridad hídrica y a priorizar los esfuerzos de protección de los ecosistemas acuáticos que la garantizan desde todos los niveles de gestión.

Citas

Boyd, J., and S. Banzhaf. 2007. What are ecosystem services? The need for standardized environmental accounting units. Ecological Economics 63:616-626. https://doi.org/10.1016/j.ecolecon.2007.01.002.

Bucher, E. H., and E. D. Curto. 2009. Managing Salt Lakes in the Neotropics: Challenges and Alternatives The Case of Mar Chiquita, Argentina. https://digitalcommons.usu.edu/nrei/vol15/iss1/24.

Castro, J.E., G. Ariel Kohan, A. Poma and C. Ruggerio. 2020. Territorialidades del agua. Conocimiento y acción para construir. Ediciones CICCUS. Red WATERLAT-GOBACIT. https://doi.org/10.2307/j.ctv1xg5hd9.

Chen, J., B. Jiang, Y. Bai, X. Xu, and J. M. Alatalo. 2019. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimization. Science of The Total Environment 650:1426-1439. https://doi.org/10.1016/j.scitotenv.2018.09.126.

Chung, M. G., Frank, K. A., Pokhrel, Y., Dietz, T., and J. Liu. 2021. Natural infrastructure in sustaining global urban freshwater ecosystem services. Nature Sustainability 4(12):1068-1075. https://doi.org/10.1038/s41893-021-00786-4.

Correa de Oliveira, D. B., W. D. A. Soares, and M. A. C. R. de Holanda. 2020. Effects of rainwater intrusion on an activated sludge sewer treatment system. Revista Ambiente e Água 15(3). https://doi.org/10.4136/ambi-agua.2497.

Csardi, G., and T. Nepusz. 2006. The igraph software package for complex network research. InterJournal, Complex Systems, 1695. URL: igraph.org.

Daily, G. C. 1997. Introduction: What are Ecosystem Services? Pp. 1-10 en G. C. Daily (ed.). Nature's Services: Societal Dependence on Natural Ecosystems. Island Press, Washington, D.C. USA.

Díaz, S., S. Demissew, J. Carabias, C. Joly, M. Lonsdale, N. Ash, A. Larigauderie, J. Adhikari, et al. 2015. The IPBES Conceptual Framework - connecting nature and people. Current Opinion in Environmental Sustainability 14:1-16. https://doi.org/10.1016/j.cosust.2014.11.002.

Domínguez, E., A. Giorgi, and N. Gómez. 2020. La bioindicación en el monitoreo y evaluación de los sistemas fluviales de la Argentina: bases para el análisis de la integridad ecológica. Primera edición. Eudeba. Ciudad Autónoma de Buenos Aires, Argentina.

Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodríguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. E. Alsdorf. 2007. The shuttle radar topography mission. Reviews of Geophysics 45(2). https://doi.org/10.1029/2005RG000183.

Flörke, M., C. Schneider, and R. I. McDonald. 2018. Water competition between cities and agriculture driven by climate change and urban growth. Nature Sustainability 1:51-58. https://doi.org/10.1038/s41893-017-0006-8.

Fuenfschilling, L., and B. Truffer. 2016. The interplay of institutions, actors and technologies in socio-technical systems - An analysis of transformations in the Australian urban water sector. Technological Forecasting and Social Change 103:298-312. https://doi.org/10.1016/J.TECHFORE.2015.11.023.

Giacosa, R., C. Paoli, and P. Cacik. 2020. Conocimiento del Régimen Hidrológico. Pp. 69-104 en C. Paoli and M. Schreider (eds.). El Río Paraná en su tramo medio. Universidad Nacional del Litoral, Santa Fe, Argentina.

Hernández, M. A., N. González, and J. Chilton. 1997. Impact of rising piezometric levels on Greater Buenos Aires due to partial changing of water services infrastructure. Pp. 237-242 en J. Chilton (ed.). Groundwater in the urban environment. Proceedings of the XXVII IAH Congress on Groundwater in the Urban Environment, Nottingham UK. A. A. Balkema. URL: sedici.unlp.edu.ar/handle/10915/26650.

Jenson, S. K., and J. O. Domingue. 1988. Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogrammetric Engineering and Remote Sensing 54(11):1593-1600. https://doi-org/10.4236/jwarp.2012.49081.

Jobbágy, E. G., M. Pascual, M. P. Barral, M. Poca, L. G. Silva, J. Oddi, G. Castellanos, A. Clavijo, B. G. Díaz, and P. E. Villagra. 2021. Representación espacial de la oferta y la demanda de los servicios ecosistémicos vinculados al agua. Ecología Austral 32:213-228. https://doi.org/10.25260/EA.22.32.1.1.1213.

Juárez, P., L. Becerra, and H. Thomas. 2018. Agua para el Desarrollo. Hacia la Planificación Estratégica de Sistemas Tecnológicos Sociales. Pp. 45-66 en P. Juárez (ed.). Hacia la gestión estratégica del agua y saneamiento en el sur-sur: visiones, aprendizajes y tecnologías. Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.

Karpf, C., and P. Krebs. 2011. Quantification of groundwater infiltration and surface water inflows in urban sewer networks based on a multiple model approach. Water Research 45(10):3129-3136. https://doi.org/10.1016/j.watres.2011.03.022.

Lanzetta, M. 2021. Los desafíos del cambio climático en grandes metrópolis latinoamericanas. Estado y Políticas Públicas 17:19-38.

Laterra, P., E. Jobbágy, and J. Paruelo. 2011. Valoración de Servicios Ecosistémicos. Conceptos, herramientas y aplicaciones para el ordenamiento territorial. Ediciones INTA. Primera edición. Buenos Aires, Argentina.

Lehner, B., and G. Grill. 2013. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrological Processes 27(15):2171-2186. https://doi.org/10.1002/hyp.9740.

Lehner, B., K. Verdin, and A. Jarvis. 2008. New global hydrography derived from spaceborne elevation data. Eos, Transactions, American Geophysical Union 89(10):93-94. https://doi.org/10.1029/2008eo100001.

Litter, M. I., A. M. Ingallinella, V. Olmos, M. Savio, G. Difeo, L. Botto, et al. 2019. Arsenic in Argentina: Occurrence, human health, legislation and determination. Science of the Total Environment 676:756-766. https://doi.org/10.1016/J.SCITOTENV.2019.04.262.

Luck, G. W., R. Harrington, P. A. Harrison, C. Kremen, P. M. Berry, R. Bugter, et al. 2009. Quantifying the contribution of organisms to the provision of ecosystem services. BioScience 59:223-235. https://doi.org/10.1525/BIO.2009.59.3.7.

McDonald, R. I., K. Weber, J. Padowski, M. Flörke, C. Schneider, P. A. Green, T. Gleeson, et al. 2014. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Global Environmental Change 27:96-105. https://doi.org/10.1016/J.GLOENVCHA.2014.04.022.

McGrane, S. J. 2016. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrological Sciences Journal 61(13):2295-2311. https://doi.org/10.1080/02626667.2015.1128084.

Naumann, G., G. Podestá, J. Marengo, J. Luterbacher, D. Bavera, C. Arias Muñoz, et al. 2022. El episodio de sequía extrema de 2019-2021 en la Cuenca del Plata. EUR 30833 ES. Oficina de Publicaciones de la Unión Europea, Luxemburgo, ISBN 978-92-76-47671-9. https://doi.org/10.2760/346183.

O’Callaghan, J. F., and D. M. Mark. 1984. The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process 28(3):323-344. https://doi.org/10.1016/S0734-189X(84)80011-0.

O’Farrell, I., C. Motta, M. Forastier, W. Polla, S. Otaño, N. Meichtry, M. Devercelli, and R. Lombardo. 2019. Ecological meta-analysis of bloom-forming planktonic Cyanobacteria in Argentina. Harmful Algae 83:1-13. https://doi.org/10.1016/j.hal.2019.01.004.

Padowski, J. C., and J. W. Jawitz. 2012. Water availability and vulnerability of 225 large cities in the United States. Water Resources Research 48(12). https://doi.org/10.1029/2012WR012335.

Pascual, M., M. P. Barral, M. Poca, N. Pessacg, L. G. Silva, R. Albariño, M. E. Romero, and E. G. Jobbágy. 2021. Ecosistemas acuáticos continentales y sus servicios: Enfoques y escenarios de aplicación en el mundo real. Ecología Austral 32(1bis):195-212. https://doi.org/10.25260/EA.22.32.1.1.1290.

Plataforma del Agua. 2022. Informe de la plataforma del agua argentina 2017. URL: plataformadelagua.org.ar/mapa/argentina.

Quétier, F., E. Tapella, G. Conti, D. Cáceres, and S. Díaz. 2007. Servicios ecosistémicos y actores sociales. Aspectos conceptuales y metodológicos para un estudio interdisciplinario Gaceta Ecológica (84-85):17-26. URL: redalyc.org/articulo.oa?id=53908503.

Quijas, S., B. Schmid, and P. Balvanera. 2010. Plant diversity enhances provision of ecosystem services: A new synthesis. Basic and Applied Ecology 11:582-593. https://doi.org/10.1016/J.BAAE.2010.06.009.

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

Reyna, S., T. Reyna, and M. Lábaque. 2014. Fire Impacts to Quality of Reservoirs San Roque and Los Molinos. Pinnacle Environmental and Earth Sciences 1(2):315-321.

Rygaard, M., P. J. Binning, and H. J. Albrechtsen. 2011. Increasing urban water self-sufficiency: New era, new challenges. Journal of Environmental Management 92:185-194. https://doi.org/10.1016/J.JENVMAN.2010.09.009.

Sankey, H. R. 1898. Introductory note on the thermal efficiency of steam-engines. Report of the committee appointed on the 31st of March 1896, to consider and report to the council upon the subject of the definition of a standard or standards of thermal efficiency for steam-engines: With an introductory note. Minutes of Proceedings of the Institution of Civil Engineers 134:278-283. incl. Plate 5. Also published in: The Engineer 86, Sept. 2, 1898:236-237. https://doi.org/10.1680/imotp.1898.19100.

Schlesinger, W. H., and E. S. Bernhardt. 2013. Biogeochemistry: an analysis of global change. Third edition. Academic press Elsevier, Waltham, USA.

Schyns, J. F., A. Y. Hoekstra, M. J. Booij, R. J. Hogeboom, and M. M. Mekonnen. 2019. Limits to the world’s green water resources for food, feed, fiber, timber, and bioenergy. Proceedings of the National Academy of Sciences 116(11):4893-4898. https://doi.org/10.1073/pnas.1817380116.

Singh, N. K., and N. B. Basu. 2022. The human factor in seasonal streamflows across natural and managed watersheds of North America. Nature Sustainability 5:397-405. https://doi.org/10.1038/s41893-022-00848-1.

Tarboton, D. G., R. L. Bras, and I. Rodríguez-Iturbe. 1991. On the Extraction of Channel Networks from Digital Elevation Data. Hydrological Processes 5:81-100. https://doi.org/10.1002/hyp.3360050107.

Tellman, B., McDonald, R. I., Goldstein, J. H., Vogl, A. L., Flörke, M., Shemie, et al. 2018. Opportunities for natural infrastructure to improve urban water security in Latin America. Plos ONE 13(12):e0209470. https://doi.org/10.1371/journal.pone.0209470.

Trimble, M., P. R. Jacobi, T. Olivier, M. Pascual, C. Zurbriggen, L. Garrido, and N. Mazzeo. 2021a. Reconfiguring Water Governance for Resilient Social-Ecological Systems in South America. Pp. 113-135 en J. Baird and R. Plummer (eds.). Water Resilience. Management and Governance in Times of Change. Springer International Publishing Cham, Switzerland. https://doi.org/10.1007/978-3-030-48110-0_6.

Trimble, M., P. H. C. Torres, P. R. Jacobi, N. Dias Tadeu, F. Salvadores, L. Mac Donnell, et al. 2021b. Towards Adaptive Water Governance in South America: Lessons from Water Crises in Argentina, Brazil, and Uruguay. World Sustainability Series 31-46. https://doi.org/10.1007/978-3-030-76624-5_3.

Van Rooijen, D. J., T. W. Biggs, I. Smout, and P. Drechsel. 2010. Urban growth, wastewater production and use in irrigated agriculture: a comparative study of Accra, Addis Ababa and Hyderabad. Irrigation and Drainage Systems 24(1):53-64. https://doi.org/10.1007/s10795-009-9089-3.

Willcock, S., A. Parker, C. Wilson, T. Brewer, D. Bundhoo, S. Cooper, et al. 2021. Nature provides valuable sanitation services. One Earth 4(2):192-201. https://doi.org/10.1016/j.oneear.2021.01.003.

Wu, H., X. Gao, M. Wu, Y. Zhu, R. Xiong, and S. Ye. 2020. The efficiency and risk to groundwater of constructed wetland system for domestic sewage treatment-A case study in Xiantao, China. Journal of Cleaner Production 277:123384. https://doi.org/10.1016/j.jclepro.2020.123384.

Yahdjian, L., O. E. Sala, and K. M. Havstad. 2015. Rangeland ecosystem services: Shifting focus from supply to reconciling supply and demand. Frontiers in Ecology and the Environment 13:44-51. https://doi.org/10.1890/140156.

Provisión y disposición de agua en 243 ciudades argentinas: Servicios ecosistémicos en el continuo territorio-ecosistema acuático-centro urbano

Descargas

Archivos adicionales

Publicado

2022-12-10

Versiones

Cómo citar

Llanes, A. L., Poca, M., Jimenez, Y. G., Castellanos, G., Gómez, B. M., Marchese, M., Lana, N. B., Pascual, M., Albariño, R., Barral, M. P., Pascual, J., Clavijo, A., Díaz, B., Pessacg, N., & Jobbágy, E. G. (2022). ¿De dónde viene y a dónde va el agua de las ciudades? Base de datos integrada para 243 centros urbanos argentinos. Ecología Austral, 32(3), 1133–1149. https://doi.org/10.25260/EA.22.32.3.0.2028