La intensificación del uso de la tierra disminuye el carbono orgánico del suelo en bosques del Chaco Seco, Córdoba
DOI:
https://doi.org/10.25260/EA.23.33.3.0.2072Palabras clave:
tala, pastoreo, materia orgánica particulada, materia orgánica asociada a minerales, respiración microbiana potencialResumen
Los cambios en el uso de la tierra han reducido de forma drástica los bosques del Chaco Seco del centro de la Argentina. En particular, la conversión de bosques a cultivos ha generado pérdidas significativas en el carbono orgánico del suelo (COS) y en los servicios ecosistémicos asociados al mismo. Por su parte, cambios menos drásticos en el uso, como la conversión de bosques a arbustales producto de la intensificación en la tala y la ganadería, también pueden afectar considerablemente la dinámica del COS. En este trabajo evaluamos el COS total, el COS presente en la materia orgánica particulada (C-MOP) y en la materia orgánica asociada a minerales (C-MOAM), y la respiración microbiana potencial de los 0-10 cm de suelo bajo condiciones controladas en cuatro fisonomías vegetales del Chaco Seco de Córdoba, resultantes de la intensificación en la tala y en la ganadería. El contenido de COS disminuyó un 73% en la fisonomía con mayor intensidad de uso (arbustal abierto) en relación con el bosque conservado. Esto se reflejó en una disminución del C-MOP (-85%), considerado más sensible al manejo, y en una disminución en el C-MOAM (-54%), considerado más estable. La intensificación en el uso también disminuyó hasta un 62% la actividad microbiana. Sin embargo, las pérdidas de carbono por respiración microbiana podrían intensificarse por una reducción de la protección física en las fisonomías vegetales con mayor uso. Nuestros resultados sugieren que la tala y el pastoreo en bosques del Chaco Seco pueden generar importantes alteraciones en el almacenamiento y en la estabilización del COS, lo que puede conducir a la degradación del suelo y a la pérdida de servicios ecosistémicos clave.
Citas
Angst, G., K. E. Mueller, K. G. J. Nierop, and M. J. Simpson. 2021. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry 156:108189. https://doi.org/10.1016/j.soilbio.2021.108189.
Bailey, V. L., C. H. Pries, and K. Lajtha. 2019. What do we know about soil carbon destabilization? Environmental Research Letters 14(8):083004. https://doi.org/10.1088/1748-9326/ab2c11.
Bardgett, R. D., and D. A. Wardle. 2003. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258-2268. https://doi.org/10.1890/02-0274.
Baveye, P. C., L. S. Schnee, P. Boivin, M. Laba, and R. Radulovich. 2020. Soil organic matter research and climate change: merely re-storing carbon versus restoring soil functions. Frontiers in Environmental Science 8. https://doi.org/10.3389/fenvs.2020.579904.
Blankinship, J. C., A. A. Berhe, S. E. Crow, J. L. Druhan, K. A. Heckman, et al. 2018. Improving understanding of soil organic matter dynamics by triangulating theories, measurements, and models. Biogeochemistry 140:1-13. https://doi.org/10.1007/s10533-018-0478-2.
Bronick, C. J., and R. Lal. 2005. Soil structure and management: A review. Geoderma 124(1-2):3-22. https://doi.org/10.1016/j.geoderma.2004.03.005.
Cabido, M., S. R. Zeballos, M. Zak, M. L. Carranza, M. A. Giorgis, et al. 2018. Native woody vegetation in central Argentina: Classification of Chaco and Espinal forests. Applied Vegetation Science 21(2):298-311. https://doi.org/10.1111/avsc.12369.
Christensen, B. T. 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science 52(3):345-353. https://doi.org/10.1046/j.1365-2389.2001.00417.x.
Collins, S., A. Porras-Alfaro, S. L. Collins, R. L. Sinsabaugh, C. Crenshaw, et al. 2008. Pulse dynamics and microbial processes in aridland ecosystems. Journal of Ecology 96(3):413-420. https://doi.org/10.1111/j.1365-2745.2008.01362.x.
Conti, G., E. Kowaljow, F. Baptist, C. Rumpel, A. Cuchietti, et al. 2016. Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant and Soil 403(1):375-387. https://doi.org/10.1007/s11104-016-2816-2.
Conti, G., N. Pérez-Harguindeguy, F. Quètier, L. D. Gorné, P. Jaureguiberry, et al. 2014. Large changes in carbon storage under different land-use regimes in subtropical seasonally dry forests of southern South America. Agriculture, Ecosystems and Environment 197:68-76. https://doi.org/10.1016/j.agee.2014.07.025.
Cotrufo, M. F., J. L. Soong, A. J. Horton, E. E. Campbell, M. L. Haddix, et al. 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience 8:776-779. https://doi.org/10.1038/ngeo2520.
Cotrufo, M. F., M. D. Wallenstein, C. M. Boot, K. Denef, and E. Paul. 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology 19:988-995. https://doi.org/10.1111/gcb.12113.
Di Rienzo, J. A., F. Casanove, and M. G. Bal Zarini. 2020. InfoStat versión 2020. URL: infostat.com.ar.
Don, A., C. Rödenbeck, and G. Gleixner. 2013. Unexpected control of soil carbon turnover by soil carbon concentration. Environmental Chemistry Letters 11(4):407-413. https://doi.org/10.1007/s10311-013-0433-3.
Dungait, J. A. J., D. W. Hopkins, A. S. Gregory, and A. P. Whitmore. 2012. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology 18(6):1781-1796. https://doi.org/10.1111/j.1365-2486.2012.02665.x.
Duval, M. E., J. A. Galantini, J. O. Iglesias, S. Canelo, J. M. Martínez, et al. 2013. Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil and Tillage Research 131:11-19. https://doi.org/10.1016/j.still.2013.03.001.
Gude, A., E. Kandeler, and G. Gleixner. 2012. Input related microbial carbon dynamic of soil organic matter in particle size fractions. Soil Biology and Biochemistry 47:209-219. https://doi.org/10.1016/j.soilbio.2012.01.003.
Hang, S., S. Houot, and E. Barriuso. 2007. Mineralization of 14C-atrazine in an entic haplustoll as affected by selected winter weed control strategies. Soil and Tillage Research 96(1-2):234-242. https://doi.org/10.1016/j.still.2007.06.004.
Hanks, R. J., and G. L. Ashcroft. 1980. Applied Soil Physics: Soil Water and Temperature Applications. First edition. Springer US, New York, New York, USA. https://doi.org/10.1007/978-1-4684-0184-4.
Hoyos, L. E., A. M. Cingolani, M. R. Zak, M. V. Vaieretti, D. E. Gorla, et al. 2013. Deforestation and precipitation patterns in the arid Chaco forests of central Argentina. Applied Vegetation Science 16(2):260-271. https://doi.org/10.1111/j.1654-109X.2012.01218.x.
Indorante, S. J., R. D. Hammer, P. G. Koenig, and L. R. Follmer. 1990. Particle-size analysis by a modified pipette procedure. Soil Science Society of America Journal 54(2):560-563. https://doi.org/10.2136/sssaj1990.03615995005400020047x.
INTA, and Gobierno de la Provincia de Córdoba. 2022. Cartas de suelos. Nivel de reconocimiento 1:500000. URL: mapascordoba.gob.ar/viewer/#/mapa/334.
Jandl, R., M. Lindner, L. Vesterdal, B. Bauwens, R. Baritz, et al. 2007. How strongly can forest management influence soil carbon sequestration? Geoderma 137(3-4):253-268. https://doi.org/10.1016/j.geoderma.2006.09.003.
Johnson, A. I. 1963. A field method for measurement of infiltration. US Government Printing Office, Washington, Columbia, USA. https://doi.org/10.3133/wsp1544F.
Kleber, M., K. Eusterhues, M. Keiluweit, C. Mikutta, R. Mikutta, et al. 2015. Mineral-organic associations: formation, properties, and relevance in soil environments. Advances in Agronomy 130:1-140. https://doi.org/10.1016/bs.agron.2014.10.005.
Kleber, M., P. S. Nico, A. Plante, T. Filley, M. Kramer, et al. 2011. Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Global Change Biology 17(2):1097-1107. https://doi.org/10.1111/j.1365-2486.2010.02278.x.
Lal, R. 2021. Soil Organic Matter and Feeding the Future: Environmental and agronomic impacts. First edition. CRC Press, Boca Raton, Florida, USA. https://doi.org/10.1201/9781003102762.
Lal, R., W. Negassa, and K. Lorenz. 2015. Carbon sequestration in soil. Current Opinion in Environmental Sustainability 15:79-86. https://doi.org/10.1016/j.cosust.2015.09.002.
Lavallee, J. M., J. L. Soong, and M. F. Cotrufo. 2020. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology 26(1):261-273. https://doi.org/10.1111/gcb.14859.
Lehmann, J., and M. Kleber. 2015. The contentious nature of soil organic matter. Nature 528:60-68. https://doi.org/10.1038/nature16069.
Liang, C., J. P. Schimel, and J. D. Jastrow. 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology 2(8):1-6. https://doi.org/10.1038/nmicrobiol.2017.105.
Luo, Z., R. A. Viscarra Rossel, and Z. Shi. 2020. Distinct controls over the temporal dynamics of soil carbon fractions after land use change. Global Change Biology 26(8):4614-4625. https://doi.org/10.1111/gcb.15157.
Lützow, M. V., I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, et al. 2006. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions - A review. European Journal of Soil Science 57:426-445. https://doi.org/10.1111/j.1365-2389.2006.00809.x.
Marschner, B., S. Brodowski, A. Dreves, G. Gleixner, A. Gude, et al. 2008. How relevant is recalcitrance for the stabilization of organic matter in soils? Journal of Plant Nutrition and Soil Science 171:91-110. https://doi.org/10.1002/jpln.200700049.
Martens, D. A., T. E. Reedy, and D. T. Lewis. 2004. Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Global Change Biology 10(1):65-78. https://doi.org/10.1046/j.1529-8817.2003.00722.x.
Mayer, M., C. E. Prescott, W. E. A. Abaker, L. Augusto, L. Cécillon, et al. 2020. Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. Forest Ecology and Management 466:118127. https://doi.org/10.1016/j.foreco.2020.118127.
Mikutta, R., S. Turner, A. Schippers, N. Gentsch, S. Meyer-Stüve, et al. 2019. Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient. Scientific Reports 9(1):1-9. https://doi.org/10.1038/s41598-019-46501-4.
Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. Pp. 961-1010 in D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Sumner (eds.). Methods of Soil Analysis. Part 3. Chemical methods. Soil Science Society of America, American Society of Agronomy, Madison, Wisconsin, USA. https://doi.org/10.2136/sssabookser5.3.c34.
Osinaga, N. A., C. R. Álvarez, and M. A. Taboada. 2018. Effect of deforestation and subsequent land use management on soil carbon stocks in the South American Chaco. Soil 4(4):251-257. https://doi.org/10.5194/soil-4-251-2018.
Pérez-Harguindeguy, N. P., A. M. Cingolani, L. Enrico, M. V. Vaieretti, M. A. Giorgis, et al. 2022. How human-induced transitions from forest to treeless ecosystems affect litter decomposition. Ecología Austral 32(2bis):716-733. https://doi.org/10.25260/EA.22.32.2.1.1887.
Poeplau, C., and A. Don. 2013. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189-201. https://doi.org/10.1016/j.geoderma.2012.08.003.
Prescott, C. E., and L. Vesterdal. 2021. Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. Forest Ecology and Management 498:119522. https://doi.org/10.1016/j.foreco.2021.119522.
Ravi, S., D. D. Breshears, T. E. Huxman, and P. D’Odorico. 2010. Land degradation in drylands: Interactions among hydrologic-aeolian erosion and vegetation dynamics. Geomorphology 116(3-4):236-245. https://doi.org/10.1016/j.geomorph.2009.11.023.
Rice, C. W., T. B. Moorman, and M. Beare. 1996. Role of Microbial Biomass Carbon and Nitrogen in Soil Quality. Pp. 203-215 en A. J. W. Doran and A. J. Jones (eds.). Methods for assessing soil quality. SSSA Special Publications, Madison, Wisconsin, USA. https://doi.org/10.2136/sssaspecpub49.c12.
Richards, L. A. 1954. Diagnosis and improvement of saline and alkali soils. Soil Science 78:154. https://doi.org/10.1097/00010694-195408000-00012.
Robertson, G. P., D. C. Coleman, C. S. Bledsoe, and P. Sollins. 1999. Standard soil methods for long-term ecological research. Oxford University Press, New York, USA.
Rocci, K. S., J. M. Lavallee, C. E. Stewart, and M. F. Cotrufo. 2021. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. Science of the Total Environment 793:148569. https://doi.org/10.1016/j.scitotenv.2021.148569.
Rojas, J. M., J. Prause, G. A. Sanzano, O. E. A. Arce, and M. C. Sánchez. 2016. Soil quality indicators selection by mixed models and multivariate techniques in deforested areas for agricultural use in NW of Chaco, Argentina. Soil and Tillage Research 155:250-262. https://doi.org/10.1016/j.still.2015.08.010.
Six, J., R. T. Conant, E. A. Paul, and K. Paustian. 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil 241:155-176. https://doi.org/10.1023/A:1016125726789.
Smith, A. P., E. Marín-Spiotta, M. A. de Graaff, and T. C. Balser. 2014. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change. Soil Biology and Biochemistry 77:292-303. https://doi.org/10.1016/j.soilbio.2014.05.030.
Steffens, M., A. Kölbl, and I. Kögel-Knabner. 2009. Alteration of soil organic matter pools and aggregation in semi-arid steppe topsoils as driven by organic matter input. European Journal of Soil Science 60(2):198-212. https://doi.org/10.1111/j.1365-2389.2008.01104.x.
Tanentzap, A. J., and D. A. Coomes. 2012. Carbon storage in terrestrial ecosystems: do browsing and grazing herbivores matter? Biological Reviews 87(1):72-94. https://doi.org/10.1111/j.1469-185X.2011.00185.x.
Vaieretti, M. V., M. A. Giorgis, A. M. Cingolani, L. Enrico, P. A. Tecco, et al. 2021. Variación de los caracteres foliares en comunidades vegetales del centro de la Argentina bajo diferentes condiciones climáticas y de uso del suelo. Ecología Austral 31(2):372-389. https://doi.org/10.25260/EA.21.31.2.0.1237.
Vallejos, M., J. N. Volante, M. J. Mosciaro, L. M. Vale, M. L. Bustamante, et al. 2015. Transformation dynamics of the natural cover in the Dry Chaco ecoregion: A plot level geo-database from 1976 to 2012. Journal of Arid Environments 123:3-11. https://doi.org/10.1016/j.jaridenv.2014.11.009.
Villarino, S. H., G. A. Studdert, P. Baldassini, M. G. Cendoya, L. Ciuffoli, et al. 2017. Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina. Science of the Total Environment 575:1056-1065. https://doi.org/10.1016/j.scitotenv.2016.09.175.
Witzgall, K., A. Vidal, D. I. Schubert, C. Höschen, S. A. Schweizer, et al. 2021. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications 12(1):1-10. https://doi.org/10.1038/s41467-021-24192-8.
Zak, M. R., M. Cabido, D. Cáceres, and S. Díaz. 2008. What drives accelerated land cover change in central Argentina? Synergistic consequences of climatic, socioeconomic, and technological factors. Environmental Management 42(2):181-189. https://doi.org/10.1007/s00267-008-9101-y.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 M. Betania Naldini, Natalia Pérez-Harguindeguy, Esteban Kowaljow
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Las/os autoras/es conservan sus derechos de autoras/es: 1) cediendo a la revista el derecho a su primera publicación, y 2) registrando el artículo publicado con una Licencia de Atribución de Creative Commons (CC-BY 4.0), lo que permite a autoras/es y terceros verlo y utilizarlo siempre que mencionen claramente su origen (cita o referencia incluyendo autoría y primera publicación en esta revista). Las/os autores/as pueden hacer otros acuerdos de distribución no exclusiva siempre que indiquen con claridad su origen, así como compartir y divulgar ampliamente la versión publicada de su trabajo.