Intensification of land use decreases soil organic carbon in the dry Chaco forests, Córdoba
DOI:
https://doi.org/10.25260/EA.23.33.3.0.2072Keywords:
logging, grazing, particulate organic matter, mineral-associated organic matter, potential microbial respirationAbstract
Changes in land use have drastically reduced the Dry Chaco forests in central Argentina. In particular, conversion to crops has generated significant losses in soil organic carbon (SOC) and associated ecosystem services. On the other hand, less drastic changes in use, such as the conversion of forests to shrublands as a result of logging and grazing intensification, can also considerably affect the dynamics of the SOC. In this work, we evaluate total SOC, SOC in particulate organic matter (C-POM) and mineral-associated organic matter (C-MAOM), and potential microbial respiration from 0-10 cm of soil in four vegetal physiognomies resulting from logging and intensification of grazing. Total SOC content decreased by 73% in the most intensively used physiognomy (open shrubland) compared to the preserved forest. This was reflected in a decrease in C-POM (-85%), considered more sensitive to management, as well as in a decrease in C-MAOM (-54%), considered more stable. Land use intensification also decreased microbial activity by up to 62%. However, carbon losses from microbial respiration could be amplified due to reduced physical protection in intensively used vegetal physiognomies. Our results suggest that logging and grazing in Dry Chaco forests can generate significant alterations in SOC storage and stabilization, leading to soil degradation and loss of key ecosystem services.
References
Angst, G., K. E. Mueller, K. G. J. Nierop, and M. J. Simpson. 2021. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry 156:108189. https://doi.org/10.1016/j.soilbio.2021.108189.
Bailey, V. L., C. H. Pries, and K. Lajtha. 2019. What do we know about soil carbon destabilization? Environmental Research Letters 14(8):083004. https://doi.org/10.1088/1748-9326/ab2c11.
Bardgett, R. D., and D. A. Wardle. 2003. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258-2268. https://doi.org/10.1890/02-0274.
Baveye, P. C., L. S. Schnee, P. Boivin, M. Laba, and R. Radulovich. 2020. Soil organic matter research and climate change: merely re-storing carbon versus restoring soil functions. Frontiers in Environmental Science 8. https://doi.org/10.3389/fenvs.2020.579904.
Blankinship, J. C., A. A. Berhe, S. E. Crow, J. L. Druhan, K. A. Heckman, et al. 2018. Improving understanding of soil organic matter dynamics by triangulating theories, measurements, and models. Biogeochemistry 140:1-13. https://doi.org/10.1007/s10533-018-0478-2.
Bronick, C. J., and R. Lal. 2005. Soil structure and management: A review. Geoderma 124(1-2):3-22. https://doi.org/10.1016/j.geoderma.2004.03.005.
Cabido, M., S. R. Zeballos, M. Zak, M. L. Carranza, M. A. Giorgis, et al. 2018. Native woody vegetation in central Argentina: Classification of Chaco and Espinal forests. Applied Vegetation Science 21(2):298-311. https://doi.org/10.1111/avsc.12369.
Christensen, B. T. 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science 52(3):345-353. https://doi.org/10.1046/j.1365-2389.2001.00417.x.
Collins, S., A. Porras-Alfaro, S. L. Collins, R. L. Sinsabaugh, C. Crenshaw, et al. 2008. Pulse dynamics and microbial processes in aridland ecosystems. Journal of Ecology 96(3):413-420. https://doi.org/10.1111/j.1365-2745.2008.01362.x.
Conti, G., E. Kowaljow, F. Baptist, C. Rumpel, A. Cuchietti, et al. 2016. Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant and Soil 403(1):375-387. https://doi.org/10.1007/s11104-016-2816-2.
Conti, G., N. Pérez-Harguindeguy, F. Quètier, L. D. Gorné, P. Jaureguiberry, et al. 2014. Large changes in carbon storage under different land-use regimes in subtropical seasonally dry forests of southern South America. Agriculture, Ecosystems and Environment 197:68-76. https://doi.org/10.1016/j.agee.2014.07.025.
Cotrufo, M. F., J. L. Soong, A. J. Horton, E. E. Campbell, M. L. Haddix, et al. 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience 8:776-779. https://doi.org/10.1038/ngeo2520.
Cotrufo, M. F., M. D. Wallenstein, C. M. Boot, K. Denef, and E. Paul. 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology 19:988-995. https://doi.org/10.1111/gcb.12113.
Di Rienzo, J. A., F. Casanove, and M. G. Bal Zarini. 2020. InfoStat versión 2020. URL: infostat.com.ar.
Don, A., C. Rödenbeck, and G. Gleixner. 2013. Unexpected control of soil carbon turnover by soil carbon concentration. Environmental Chemistry Letters 11(4):407-413. https://doi.org/10.1007/s10311-013-0433-3.
Dungait, J. A. J., D. W. Hopkins, A. S. Gregory, and A. P. Whitmore. 2012. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology 18(6):1781-1796. https://doi.org/10.1111/j.1365-2486.2012.02665.x.
Duval, M. E., J. A. Galantini, J. O. Iglesias, S. Canelo, J. M. Martínez, et al. 2013. Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil and Tillage Research 131:11-19. https://doi.org/10.1016/j.still.2013.03.001.
Gude, A., E. Kandeler, and G. Gleixner. 2012. Input related microbial carbon dynamic of soil organic matter in particle size fractions. Soil Biology and Biochemistry 47:209-219. https://doi.org/10.1016/j.soilbio.2012.01.003.
Hang, S., S. Houot, and E. Barriuso. 2007. Mineralization of 14C-atrazine in an entic haplustoll as affected by selected winter weed control strategies. Soil and Tillage Research 96(1-2):234-242. https://doi.org/10.1016/j.still.2007.06.004.
Hanks, R. J., and G. L. Ashcroft. 1980. Applied Soil Physics: Soil Water and Temperature Applications. First edition. Springer US, New York, New York, USA. https://doi.org/10.1007/978-1-4684-0184-4.
Hoyos, L. E., A. M. Cingolani, M. R. Zak, M. V. Vaieretti, D. E. Gorla, et al. 2013. Deforestation and precipitation patterns in the arid Chaco forests of central Argentina. Applied Vegetation Science 16(2):260-271. https://doi.org/10.1111/j.1654-109X.2012.01218.x.
Indorante, S. J., R. D. Hammer, P. G. Koenig, and L. R. Follmer. 1990. Particle-size analysis by a modified pipette procedure. Soil Science Society of America Journal 54(2):560-563. https://doi.org/10.2136/sssaj1990.03615995005400020047x.
INTA, and Gobierno de la Provincia de Córdoba. 2022. Cartas de suelos. Nivel de reconocimiento 1:500000. URL: mapascordoba.gob.ar/viewer/#/mapa/334.
Jandl, R., M. Lindner, L. Vesterdal, B. Bauwens, R. Baritz, et al. 2007. How strongly can forest management influence soil carbon sequestration? Geoderma 137(3-4):253-268. https://doi.org/10.1016/j.geoderma.2006.09.003.
Johnson, A. I. 1963. A field method for measurement of infiltration. US Government Printing Office, Washington, Columbia, USA. https://doi.org/10.3133/wsp1544F.
Kleber, M., K. Eusterhues, M. Keiluweit, C. Mikutta, R. Mikutta, et al. 2015. Mineral-organic associations: formation, properties, and relevance in soil environments. Advances in Agronomy 130:1-140. https://doi.org/10.1016/bs.agron.2014.10.005.
Kleber, M., P. S. Nico, A. Plante, T. Filley, M. Kramer, et al. 2011. Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Global Change Biology 17(2):1097-1107. https://doi.org/10.1111/j.1365-2486.2010.02278.x.
Lal, R. 2021. Soil Organic Matter and Feeding the Future: Environmental and agronomic impacts. First edition. CRC Press, Boca Raton, Florida, USA. https://doi.org/10.1201/9781003102762.
Lal, R., W. Negassa, and K. Lorenz. 2015. Carbon sequestration in soil. Current Opinion in Environmental Sustainability 15:79-86. https://doi.org/10.1016/j.cosust.2015.09.002.
Lavallee, J. M., J. L. Soong, and M. F. Cotrufo. 2020. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology 26(1):261-273. https://doi.org/10.1111/gcb.14859.
Lehmann, J., and M. Kleber. 2015. The contentious nature of soil organic matter. Nature 528:60-68. https://doi.org/10.1038/nature16069.
Liang, C., J. P. Schimel, and J. D. Jastrow. 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology 2(8):1-6. https://doi.org/10.1038/nmicrobiol.2017.105.
Luo, Z., R. A. Viscarra Rossel, and Z. Shi. 2020. Distinct controls over the temporal dynamics of soil carbon fractions after land use change. Global Change Biology 26(8):4614-4625. https://doi.org/10.1111/gcb.15157.
Lützow, M. V., I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, et al. 2006. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions - A review. European Journal of Soil Science 57:426-445. https://doi.org/10.1111/j.1365-2389.2006.00809.x.
Marschner, B., S. Brodowski, A. Dreves, G. Gleixner, A. Gude, et al. 2008. How relevant is recalcitrance for the stabilization of organic matter in soils? Journal of Plant Nutrition and Soil Science 171:91-110. https://doi.org/10.1002/jpln.200700049.
Martens, D. A., T. E. Reedy, and D. T. Lewis. 2004. Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Global Change Biology 10(1):65-78. https://doi.org/10.1046/j.1529-8817.2003.00722.x.
Mayer, M., C. E. Prescott, W. E. A. Abaker, L. Augusto, L. Cécillon, et al. 2020. Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. Forest Ecology and Management 466:118127. https://doi.org/10.1016/j.foreco.2020.118127.
Mikutta, R., S. Turner, A. Schippers, N. Gentsch, S. Meyer-Stüve, et al. 2019. Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient. Scientific Reports 9(1):1-9. https://doi.org/10.1038/s41598-019-46501-4.
Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. Pp. 961-1010 in D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Sumner (eds.). Methods of Soil Analysis. Part 3. Chemical methods. Soil Science Society of America, American Society of Agronomy, Madison, Wisconsin, USA. https://doi.org/10.2136/sssabookser5.3.c34.
Osinaga, N. A., C. R. Álvarez, and M. A. Taboada. 2018. Effect of deforestation and subsequent land use management on soil carbon stocks in the South American Chaco. Soil 4(4):251-257. https://doi.org/10.5194/soil-4-251-2018.
Pérez-Harguindeguy, N. P., A. M. Cingolani, L. Enrico, M. V. Vaieretti, M. A. Giorgis, et al. 2022. How human-induced transitions from forest to treeless ecosystems affect litter decomposition. Ecología Austral 32(2bis):716-733. https://doi.org/10.25260/EA.22.32.2.1.1887.
Poeplau, C., and A. Don. 2013. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189-201. https://doi.org/10.1016/j.geoderma.2012.08.003.
Prescott, C. E., and L. Vesterdal. 2021. Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. Forest Ecology and Management 498:119522. https://doi.org/10.1016/j.foreco.2021.119522.
Ravi, S., D. D. Breshears, T. E. Huxman, and P. D’Odorico. 2010. Land degradation in drylands: Interactions among hydrologic-aeolian erosion and vegetation dynamics. Geomorphology 116(3-4):236-245. https://doi.org/10.1016/j.geomorph.2009.11.023.
Rice, C. W., T. B. Moorman, and M. Beare. 1996. Role of Microbial Biomass Carbon and Nitrogen in Soil Quality. Pp. 203-215 en A. J. W. Doran and A. J. Jones (eds.). Methods for assessing soil quality. SSSA Special Publications, Madison, Wisconsin, USA. https://doi.org/10.2136/sssaspecpub49.c12.
Richards, L. A. 1954. Diagnosis and improvement of saline and alkali soils. Soil Science 78:154. https://doi.org/10.1097/00010694-195408000-00012.
Robertson, G. P., D. C. Coleman, C. S. Bledsoe, and P. Sollins. 1999. Standard soil methods for long-term ecological research. Oxford University Press, New York, USA.
Rocci, K. S., J. M. Lavallee, C. E. Stewart, and M. F. Cotrufo. 2021. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. Science of the Total Environment 793:148569. https://doi.org/10.1016/j.scitotenv.2021.148569.
Rojas, J. M., J. Prause, G. A. Sanzano, O. E. A. Arce, and M. C. Sánchez. 2016. Soil quality indicators selection by mixed models and multivariate techniques in deforested areas for agricultural use in NW of Chaco, Argentina. Soil and Tillage Research 155:250-262. https://doi.org/10.1016/j.still.2015.08.010.
Six, J., R. T. Conant, E. A. Paul, and K. Paustian. 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil 241:155-176. https://doi.org/10.1023/A:1016125726789.
Smith, A. P., E. Marín-Spiotta, M. A. de Graaff, and T. C. Balser. 2014. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change. Soil Biology and Biochemistry 77:292-303. https://doi.org/10.1016/j.soilbio.2014.05.030.
Steffens, M., A. Kölbl, and I. Kögel-Knabner. 2009. Alteration of soil organic matter pools and aggregation in semi-arid steppe topsoils as driven by organic matter input. European Journal of Soil Science 60(2):198-212. https://doi.org/10.1111/j.1365-2389.2008.01104.x.
Tanentzap, A. J., and D. A. Coomes. 2012. Carbon storage in terrestrial ecosystems: do browsing and grazing herbivores matter? Biological Reviews 87(1):72-94. https://doi.org/10.1111/j.1469-185X.2011.00185.x.
Vaieretti, M. V., M. A. Giorgis, A. M. Cingolani, L. Enrico, P. A. Tecco, et al. 2021. Variación de los caracteres foliares en comunidades vegetales del centro de la Argentina bajo diferentes condiciones climáticas y de uso del suelo. Ecología Austral 31(2):372-389. https://doi.org/10.25260/EA.21.31.2.0.1237.
Vallejos, M., J. N. Volante, M. J. Mosciaro, L. M. Vale, M. L. Bustamante, et al. 2015. Transformation dynamics of the natural cover in the Dry Chaco ecoregion: A plot level geo-database from 1976 to 2012. Journal of Arid Environments 123:3-11. https://doi.org/10.1016/j.jaridenv.2014.11.009.
Villarino, S. H., G. A. Studdert, P. Baldassini, M. G. Cendoya, L. Ciuffoli, et al. 2017. Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina. Science of the Total Environment 575:1056-1065. https://doi.org/10.1016/j.scitotenv.2016.09.175.
Witzgall, K., A. Vidal, D. I. Schubert, C. Höschen, S. A. Schweizer, et al. 2021. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications 12(1):1-10. https://doi.org/10.1038/s41467-021-24192-8.
Zak, M. R., M. Cabido, D. Cáceres, and S. Díaz. 2008. What drives accelerated land cover change in central Argentina? Synergistic consequences of climatic, socioeconomic, and technological factors. Environmental Management 42(2):181-189. https://doi.org/10.1007/s00267-008-9101-y.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 M. Betania Naldini, Natalia Pérez-Harguindeguy, Esteban Kowaljow
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.