La masa corporal modula los patrones demográficos de depredadores superiores y sus presas nativas e invasoras: Un enfoque biomatemático
DOI:
https://doi.org/10.25260/EA.24.34.1.0.2231Palabras clave:
invasión biológica, modelo impulsivo, cadena trófica, depredación, tamaño corporalResumen
La llegada de especies invasoras a comunidades nativas impacta en la estructura y el funcionamiento de los ecosistemas, y se la considera un indicador crucial de la pérdida de biodiversidad. Explorar los efectos de nuevas especies en comunidades plantea desafíos que se pueden abordar desde la ecología teórica. Además de estructurar las relaciones tróficas, el tamaño corporal de las especies puede influir en el éxito de los depredadores e, incluso, favorecer la coexistencia entre especies. Sin embargo, se le ha prestado poca atención a los efectos de las diferencias en el tamaño corporal de las especies en las interacciones entre consumidores primarios nativos e invasores. Esto puede ser relevante para su coexistencia con los depredadores de nivel superior. Nuestro objetivo es estudiar patrones demográficos mediante un modelo dinámico y mecanicista de dos consumidores primarios estructurados por edad (uno invasor y otro nativo) que comparten un recurso vegetal y son presa de un depredador común. En nuestro modelo destacamos tres fenómenos cruciales: la estructuración de los consumidores primarios en adultos y juveniles, la reproducción en pulsos discretos y la incorporación estacional de nuevos individuos a la población. De esta manera, el éxito de una especie sobre la otra radica en su capacidad reproductiva para incorporar individuos en cada ciclo reproductivo. Nuestras simulaciones revelan que los patrones de abundancia se ven influenciados por el tamaño corporal, lo que sugiere que cambios en el tamaño corporal de los depredadores podrían ser indicadores claves de cambios en la estructura comunitaria.
Citas
Anderson, C. B., G. M. Pastur, M. V. Lencinas, P. K. Wallem, M. C. Moorman, and A. D. Rosemond. 2009. Do introduced North American beavers Castor canadensis engineer differently in southern South America? An overview with implications for restoration. Mammal Review 39(1):33-52. https://doi.org/10.1111/j.1365-2907.2008.00136.x.
Ballari, S. A., C. B. Anderson, and A. E. Valenzuela. 2016. Understanding trends in biological invasions by introduced mammals in southern South America: a review of research and management. Mammal Review 46(3):229-240. https://doi.org/10.1111/mam.12065.
Beltrami, E., N. Gálvez, C. Osorio, M. J. Kelly, D. Morales-Moraga, and C. Bonacic. 2021. Ravines as conservation strongholds for small wildcats under pressure from free-ranging dogs and cats in Mediterranean landscapes of Chile. Studies on Neotropical Fauna and Environment 58(1):1-17. https://doi.org/10.1080/01650521.2021.1933691.
Beschta, R. L., and W. J. Ripple. 2009. Large predators and trophic cascades in terrestrial ecosystems of the western United States. Biological Conservation 142(11):2401-2414. https://doi.org/10.1016/j.biocon.2009.06.015.
Binzer, A., C. Guill, U. Brose, and B. C. Rall. 2012. The dynamics of food chains under climate change and nutrient enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1605):2935-2944. https://doi.org/10.1098/rstb.2012.0230.
Buenavista, S., and F. Palomares. 2018. The role of exotic mammals in the diet of native carnivores from South America. Mammal Review 48(1):37-47. https://doi.org/10.1111/mam.12111.
Butchart, S. H., M. Walpole, B. Collen, A. Van Strien, J. P. Scharlemann, R. E. Almond, and R. Watson. 2010. Global biodiversity: indicators of recent declines. Science 328(5982):1164-1168. 10.1126/science.1187512. https://doi.org/10.1126/science.1187512.
Byrnes, J. E., P. L. Reynolds, and J. J. Stachowicz. 2007. Invasions and extinctions reshape coastal marine food webs. PLOS ONE 2(3):e295. https://doi.org/10.1371/journal.pone.0000295.
Campillay-Llanos, W., F. Córdova-Lepe, and F. N. Moreno-Gómez, F. N. 2022. Coexistence, energy, and trophic cascade in a three-level food chain integrating body sizes. Frontiers in Ecology and Evolution 10:821176. https://doi.org/10.3389/fevo.2022.821176.
Campillay‐Llanos, W., V. Saldaña‐Núñez, F. Córdova‐Lepe, and F. N. Moreno‐Gómez. 2021. Fish catch management strategies: Evaluating the interplay between body size and global warming. Natural Resource Modeling 34(4):e12331. https://doi.org/10.1111/nrm.12331.
Castillo, S., M. Pinto, and R. Torres, R. 2019. Asymptotic formulae for solutions to impulsive differential equations with piecewise constant argument of generalized type. Electronic Journal of Differential Equations. URL: hdl.handle.net/10877/14749.
Colwell, R. K. 1989. Hummingbirds of the Juan Fernández Islands: natural history, evolution and population status. Ibis 131(4):548-566. https://doi.org/10.1111/j.1474-919X.1989.tb04790.x.
Cruz, L. R., and M. M. Pires. 2022. Body mass ratios determine dietary patterns and help predicting predator–prey interactions of Neotropical Carnivora. Mammal Research 67(3):255-263. https://doi.org/10.1007/s13364-022-00631-9.
Cunningham, C. X., C. N. Johnson, and M. E. Jones. 2020. A native apex predator limits an invasive mesopredator and protects native prey: Tasmanian devils protecting bandicoots from cats. Ecology Letters 23(4):711-721. https://doi.org/10.1111/ele.13473.
Cunningham, C. X., C. N. Johnson, T. Hollings, K. Kreger, and M. E. Jones. 2019. Trophic rewilding establishes a landscape of fear: Tasmanian devil introduction increases risk‐sensitive foraging in a key prey species. Ecography 42(12):2053-2059. https://doi.org/10.1111/ecog.04635.
Damuth, J. 1993. Cope's rule, the island rule and the scaling of mammalian population density. Nature 365(6448):748-750. https://doi.org/10.1038/365748a0.
Davis, N. E., D. M. Forsyth, and G. Coulson. 2010. Facilitative interactions between an exotic mammal and native and exotic plants: hog deer (Axis porcinus) as seed dispersers in south-eastern Australia. Biological Invasions 12(5):1079-1092. https://doi.org/10.1007/s10530-009-9525-1.
DeLong, J. P. 2012. Experimental demonstration of a ‘rate–size’trade-off governing body size optimization. Evolutionary Ecology Research 14(3):343-352.
DeLong, J. P., T. C. Hanley, and D. A. Vasseur. 2014. Predator–prey dynamics and the plasticity of predator body size. Functional Ecology 28(2):487-493. https://doi.org/10.1111/1365-2435.12199.
Dickman, A. J., A. E. Hinks, E. A. Macdonald, D. Burnham, and D. W. Macdonald. 2015. Priorities for global felid conservation. Conservation Biology 29(3):854-864. https://doi.org/10.1111/cobi.12494.
Essl, F., S. Bacher, P. Genovesi, P. E. Hulme, J. M. Jeschke, S. Katsanevakis, and D. M. Richardson. 2018. Which taxa are alien? Criteria, applications, and uncertainties. BioScience 68(7):496-509. https://doi.org/10.1093/biosci/biy057.
Gigliotti, L. C., L. Keener, L. H. Swanepoel, C. Sholto-Douglas, A. Hunnicutt, and G. Curveira-Santos. 2023. Positive but un-sustained wildlife community responses to reserve expansion and mammal reintroductions in South Africa. Biological Conservation 287:110277. https://doi.org/10.1016/j.biocon.2023.110277.
Gilg, O., I. Hanski, and B. Sittler. 2003. Cyclic dynamics in a simple vertebrate predator-prey community. Science 302(5646):866-868. https://doi.org/10.1126/science.108750.
Gobin, J., T. J. Hossie, R. E. Derbyshire, S. Sonnega, T. W. Cambridge, L. Scholl, and D. L. Murray. 2022. Functional responses shape node and network level properties of a simplified boreal food web. Front Ecol Evol 10:898805. https://doi.org/10.3389/fevo.2022.898805.
González, P., and M. Pinto. 1996. Asymptotic behavior of impulsive differential equations. The Rocky Mountain Journal of Mathematics 26(1):165-173. URL: jstor.org/stable/44238007.
Green, S. J., C. B. Brookson, N. A. Hardy, and L. B. Crowder. 2022. Trait-based approaches to global change ecology: moving from description to prediction. Proceedings of the Royal Society B 289(1971):20220071.
Grigione, M. M., P. Beier, R. A. Hopkins, D. Neal, W. D. Padley, C. M. Schonewald, and M. L. Johnson. 2002. Ecological and allometric determinants of home‐range size for mountain lions (Puma concolor). Animal Conservation 5(4):317-324. https://doi.org/10.1017/S1367943002004079.
Hakl, R., M. Pinto, V. Tkachenko, and S. Trofimchuk. 2017. Almost periodic evolution systems with impulse action at state-dependent moments. Journal of Mathematical Analysis and Applications 446(1):1030-1045. https://doi.org/10.1016/j.jmaa.2016.09.024.
Hastings, A., J. E. Byers, J. A. Crooks, K. Cuddington, C. G. Jones, J. G. Lambrinos, and W. G. Wilson. 2007. Ecosystem engineering in space and time. Ecology Letters 10(2):153-164. https://doi.org/10.1111/j.1461-0248.2006.00997.x.
Hatton, I. A., A. P. Dobson, D. Storch, E. D. Galbraith, and M. Loreau. 2019. Linking scaling laws across eukaryotes. Proceedings of the National Academy of Sciences 116(43):21616-21622. https://doi.org/10.1073/pnas.1900492116.
Inskip, C., and A. Zimmermann. 2009. Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43(1):18-34. https://doi.org/10.1017/S003060530899030X.
IUCN (International Union for Conservation of Nature). 2017. The IUCN Red List of Threatened Species. IUCN, Gland.
Jansen, B. D., and J. A. Jenks. 2011. Estimating body mass of pumas (Puma concolor). Wildlife Research 38(2):147-151. https://doi.org/10.1071/WR10109.
Krebs, C. J., R. Boonstra, A. J. Kenney, and B. S. Gilbert. 2018. Hares and small rodent cycles: a 45-year perspective on predator-prey dynamics in the Yukon boreal forest. Australian Zoologist 39(4):724-732. https://doi.org/10.7882/AZ.2018.012.
LaBarge, L. R., M. J. Evans, J. R. Miller, G. Cannataro, C. Hunt, and L. M. Elbroch. 2022. Pumas Puma concolor as ecological brokers: a review of their biotic relationships. Mammal Review 52(3):360-376. https://doi.org/10.1111/mam.12281.
Lebreton, J. D., K. P. Burnham, J. Clobert, and D. R. Anderson. 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs 62(1):67-118. https://doi.org/10.2307/2937171.
Lu, W., M. Pinto, and Y. Xia. 2022. Smooth stable manifolds for the non-instantaneous impulsive equations with applications to Duffing oscillators. Proceedings of the Royal Society A 478(2259):20210957. https://doi.org/10.1098/rspa.2021.0957.
Marquet, P. A. 2002. Of predators, prey, and power laws. Science 295(5563):2229-2230. https://doi.org/10.1126/science.1070587.
Monk, J. D., J. A. Smith, E. Donadío, P. L. Perrig, R. D. Crego, M. Fileni, and A. D. Middleton. 2022. Cascading effects of a disease outbreak in a remote protected area. Ecology Letters 25(5):1152-1163. https://doi.org/10.1111/ele.13983.
Ortiz, E., R. Ramos-Jiliberto, and M. Arim. 2023. Prey selection along a predators’ body size gradient evidences the role of different trait-based mechanisms in food web organization. PLOS ONE 18(10):e0292374.
Osorio, C., A. Muñoz, N. Guarda, C. Bonacic, and M. Kelly. 2020. Exotic prey facilitate coexistence between Pumas and Culpeo Foxes in the Andes of central Chile. Diversity 12(9):317. https://doi.org/10.3390/d12090317.
Peckarsky, B. L., P. A. Abrams, D. I. Bolnick, L. M. Dill, J. H. Grabowski, B. Luttbeg, and G. C. Trussell. 2008. Revisiting the classics: considering nonconsumptive effects in textbook examples of predator-prey interactions. Ecology 89(9):2416-2425. https://doi.org/10.1890/07-1131.1.
Pinto, M., R. Torres, and D. Sepulveda. 2018. Exponential periodic attractor of impulsive Hopfield-type neural network system with piecewise constant argument. Electronic Journal of Qualitative Theory of Differential Equations 2018(34):1-28. https://doi.org/10.14232/ejqtde.2018.1.34.
Pyke, C. R., R. Thomas, R. D. Porter, J. J. Hellmann, S. Dukes, D. M. Lodge, and G. Chavarria. 2008. Current practices and future opportunities for policy on climate change and invasive species. Conservation Biology 22(3):585-592. https://doi.org/10.1111/j.1523-1739.2008.00956.x.
Pyšek, P., P. E. Hulme, D. Simberloff, S. Bacher, T. M. Blackburn, J. T. Carlton, and D. M. Richardson. 2020. Scientists' warning on invasive alien species. Biological Reviews 95(6):1511-1534. https://doi.org/10.1111/brv.12627.
Ripple, W. J., and R. L. Beschta. 2003. Wolf reintroduction, predation risk, and cottonwood recovery in Yellowstone National Park. Forest Ecology and Management 184(1-3):299-313. https://doi.org/10.1016/S0378-1127(03)00154-3.
Ripple, W. J., and R. L. Beschta. 2004. Wolves and the ecology of fear: Can predation risk structure ecosystems? BioScience 54(8):755–766. https://doi.org/10.1641/0006-3568(2004)054[0755:WATEOF]2.0.CO;2.
Ripple, W. J., and R. L. Beschta. 2012. Trophic cascades in Yellowstone: the first 15 years after wolf reintroduction. Biological Conservation 145(1):205-213. https://doi.org/10.1016/j.biocon.2011.11.005.
Ripple, W. J., and E. J. Larsen. 2000. Historic aspen recruitment, elk, and wolves in northern Yellowstone National Park, USA. Biological Conservation 95(3):361-370. https://doi.org/10.1016/S0006-3207(00)00014-8.
Ripple, W. J., J. A. Estes, R. L. Beschta, C. C. Wilmers, E. G. Ritchie, M. Hebblewhite, and A. J. Wirsing. 2014. Status and ecological effects of the world’s largest carnivores. Science 343(6167):1241484. https://doi.org/10.1126/science.12414.
Ripple, W. J., E. J. Larsen, R. A. Renkin, and D. W. Smith. 2001. Trophic cascades among wolves, elk and aspen on Yellowstone National Park’s northern range. Biological Conservation 102(3):227-234. https://doi.org/10.1016/S0006-3207(01)00107-0.
Ritchie, E. G., and C. N. Johnson. 2009. Predator interactions, mesopredator release and biodiversity conservation. Ecology Letters 12(9):982-998. https://doi.org/10.1111/j.1461-0248.2009.01347.x.
Ritchie, E. G., B. Elmhagen, A. S. Glen, M. Letnic, G. Ludwig, and R. A. McDonald. 2012. Ecosystem restoration with teeth: What role for predators? Trends in Ecology and Evolution 27(5):265-271. https://doi.org/10.1016/j.tree.2012.01.001.
Rogers, T. L., T. C. Gouhier, and D. L. Kimbro. 2018. Temperature dependency of intraguild predation between native and invasive crabs. Ecology 99(4):885-895. https://doi.org/10.1002/ecy.2157.
Samoilenko, A. M., and N. A. Perestyuk. 1995. Impulsive differential equations. World Scientific. https://doi.org/10.1142/2892.
Schmidt-Nielsen, K., and S. N. Knut. 1984. Scaling: why is animal size so important? Cambridge University Press. https://doi.org/10.1017/CBO9781139167826.
Séguin, A., É. Harvey, P. Archambault, C. Nozais, and D. Gravel. 2014. Body size as a predictor of species loss effect on ecosystem functioning. Scientific Reports 4(1):1-5. https://doi.org/10.1038/srep04616.
Sentis, A., C. Gémard, B. Jaugeon, and D. S. Boukal. 2017. Predator diversity and environmental change modify the strengths of trophic and nontrophic interactions. Global Change Biology 23(7):2629-2640. https://doi.org/10.1111/gcb.13560.
Shedden‐González, A., B. Solórzano‐García, J. M. White, P. K. Gillingham, and A. H. Korstjens. 2023. Drivers of jaguar (Panthera onca) and puma (Puma concolor) predation on endangered primates within a transformed landscape in southern Mexico. Biotropica 55(5):1058-1068. https://doi.org/10.1111/btp.13253.
Van de Wolfshaar, K. E., A. M. De Roos, and L. Persson. 2006. Size-dependent interactions inhibit coexistence in intraguild predation systems with life-history omnivory. The American Naturalist 168(1):62-75. https://doi.org/10.1086/505156.
Weitz, J. S., and S. A. Levin. 2006. Size and scaling of predator–prey dynamics. Ecology Letters 9(5):548-557. https://doi.org/10.1111/j.1461-0248.2006.00900.x.
Wilmers, C. C., Y. Wang, B. Nickel, P. Houghtaling, Y. Shakeri, M. L. Allen, and T. Williams. 2013. Scale dependent behavioral responses to human development by a large predator, the puma. PLOS ONE 8(4):e60590. https://doi.org/10.1371/journal.pone.0060590.
Yodzis, P., and S. Innes. 1992. Body size and consumer-resource dynamics. The American Naturalist 139(6):1151-1175. https://doi.org/10.1086/285380.
Descargas
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 William Campillay-Llanos, Manuel Pinto, Christian Osorio
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Las/os autoras/es conservan sus derechos de autoras/es: 1) cediendo a la revista el derecho a su primera publicación, y 2) registrando el artículo publicado con una Licencia de Atribución de Creative Commons (CC-BY 4.0), lo que permite a autoras/es y terceros verlo y utilizarlo siempre que mencionen claramente su origen (cita o referencia incluyendo autoría y primera publicación en esta revista). Las/os autores/as pueden hacer otros acuerdos de distribución no exclusiva siempre que indiquen con claridad su origen, así como compartir y divulgar ampliamente la versión publicada de su trabajo.