Body size modulates demographic patterns of top predators and their native and invasive prey: A biomathematical approach

Authors

  • William Campillay-Llanos Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Talca. Talca, Chile. Research and Extension Center for Irrigation and Agroclimatology (CITRA), Faculty of Agricultural Sciences, Universidad de Talca. Talca, Chile
  • Manuel Pinto Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile. Santiago, Chile
  • Christian Osorio Faunativa. Santiago, Chile. Proyecto Carnívoros Australes. Constitución, Chile

DOI:

https://doi.org/10.25260/EA.24.34.1.0.2231

Keywords:

biological invasion, impulsive model, trophic chain, predation, body size

Abstract

The arrival of invasive species in native communities impacts the structure and functioning of ecosystems, and is considered a critical indicator of loss of biodiversity. Exploring the effects of new species in communities presents challenges addressable through theoretical ecology. Species body size not only shapes trophic relationships, but may also impact predator success and facilitate species coexistence. However, little attention has been paid to the effects of differences in species body size on interactions between native and invasive primary consumers, which could be relevant to their coexistence with higher-level predators. Our aim is to investigate demographic patterns using a dynamic, mechanistic model of two age-structured primary consumers (one invasive and one native) sharing a plant resource and preyed upon by a common predator. In our model, we highlight three crucial phenomena: the structuring of primary consumers into adults and juveniles, reproduction occurring in discrete pulses, and the seasonal addition of new individuals to the population. Hence, the success of one species over the other relies on its reproductive capacity to incorporate individuals in each reproductive cycle. Our simulations reveal that abundance patterns are influenced by body size, suggesting that changes in predator body size could serve as key indicators of shifts in community structure.

References

Anderson, C. B., G. M. Pastur, M. V. Lencinas, P. K. Wallem, M. C. Moorman, and A. D. Rosemond. 2009. Do introduced North American beavers Castor canadensis engineer differently in southern South America? An overview with implications for restoration. Mammal Review 39(1):33-52. https://doi.org/10.1111/j.1365-2907.2008.00136.x.

Ballari, S. A., C. B. Anderson, and A. E. Valenzuela. 2016. Understanding trends in biological invasions by introduced mammals in southern South America: a review of research and management. Mammal Review 46(3):229-240. https://doi.org/10.1111/mam.12065.

Beltrami, E., N. Gálvez, C. Osorio, M. J. Kelly, D. Morales-Moraga, and C. Bonacic. 2021. Ravines as conservation strongholds for small wildcats under pressure from free-ranging dogs and cats in Mediterranean landscapes of Chile. Studies on Neotropical Fauna and Environment 58(1):1-17. https://doi.org/10.1080/01650521.2021.1933691.

Beschta, R. L., and W. J. Ripple. 2009. Large predators and trophic cascades in terrestrial ecosystems of the western United States. Biological Conservation 142(11):2401-2414. https://doi.org/10.1016/j.biocon.2009.06.015.

Binzer, A., C. Guill, U. Brose, and B. C. Rall. 2012. The dynamics of food chains under climate change and nutrient enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1605):2935-2944. https://doi.org/10.1098/rstb.2012.0230.

Buenavista, S., and F. Palomares. 2018. The role of exotic mammals in the diet of native carnivores from South America. Mammal Review 48(1):37-47. https://doi.org/10.1111/mam.12111.

Butchart, S. H., M. Walpole, B. Collen, A. Van Strien, J. P. Scharlemann, R. E. Almond, and R. Watson. 2010. Global biodiversity: indicators of recent declines. Science 328(5982):1164-1168. 10.1126/science.1187512. https://doi.org/10.1126/science.1187512.

Byrnes, J. E., P. L. Reynolds, and J. J. Stachowicz. 2007. Invasions and extinctions reshape coastal marine food webs. PLOS ONE 2(3):e295. https://doi.org/10.1371/journal.pone.0000295.

Campillay-Llanos, W., F. Córdova-Lepe, and F. N. Moreno-Gómez, F. N. 2022. Coexistence, energy, and trophic cascade in a three-level food chain integrating body sizes. Frontiers in Ecology and Evolution 10:821176. https://doi.org/10.3389/fevo.2022.821176.

Campillay‐Llanos, W., V. Saldaña‐Núñez, F. Córdova‐Lepe, and F. N. Moreno‐Gómez. 2021. Fish catch management strategies: Evaluating the interplay between body size and global warming. Natural Resource Modeling 34(4):e12331. https://doi.org/10.1111/nrm.12331.

Castillo, S., M. Pinto, and R. Torres, R. 2019. Asymptotic formulae for solutions to impulsive differential equations with piecewise constant argument of generalized type. Electronic Journal of Differential Equations. URL: hdl.handle.net/10877/14749.

Colwell, R. K. 1989. Hummingbirds of the Juan Fernández Islands: natural history, evolution and population status. Ibis 131(4):548-566. https://doi.org/10.1111/j.1474-919X.1989.tb04790.x.

Cruz, L. R., and M. M. Pires. 2022. Body mass ratios determine dietary patterns and help predicting predator–prey interactions of Neotropical Carnivora. Mammal Research 67(3):255-263. https://doi.org/10.1007/s13364-022-00631-9.

Cunningham, C. X., C. N. Johnson, and M. E. Jones. 2020. A native apex predator limits an invasive mesopredator and protects native prey: Tasmanian devils protecting bandicoots from cats. Ecology Letters 23(4):711-721. https://doi.org/10.1111/ele.13473.

Cunningham, C. X., C. N. Johnson, T. Hollings, K. Kreger, and M. E. Jones. 2019. Trophic rewilding establishes a landscape of fear: Tasmanian devil introduction increases risk‐sensitive foraging in a key prey species. Ecography 42(12):2053-2059. https://doi.org/10.1111/ecog.04635.

Damuth, J. 1993. Cope's rule, the island rule and the scaling of mammalian population density. Nature 365(6448):748-750. https://doi.org/10.1038/365748a0.

Davis, N. E., D. M. Forsyth, and G. Coulson. 2010. Facilitative interactions between an exotic mammal and native and exotic plants: hog deer (Axis porcinus) as seed dispersers in south-eastern Australia. Biological Invasions 12(5):1079-1092. https://doi.org/10.1007/s10530-009-9525-1.

DeLong, J. P. 2012. Experimental demonstration of a ‘rate–size’trade-off governing body size optimization. Evolutionary Ecology Research 14(3):343-352.

DeLong, J. P., T. C. Hanley, and D. A. Vasseur. 2014. Predator–prey dynamics and the plasticity of predator body size. Functional Ecology 28(2):487-493. https://doi.org/10.1111/1365-2435.12199.

Dickman, A. J., A. E. Hinks, E. A. Macdonald, D. Burnham, and D. W. Macdonald. 2015. Priorities for global felid conservation. Conservation Biology 29(3):854-864. https://doi.org/10.1111/cobi.12494.

Essl, F., S. Bacher, P. Genovesi, P. E. Hulme, J. M. Jeschke, S. Katsanevakis, and D. M. Richardson. 2018. Which taxa are alien? Criteria, applications, and uncertainties. BioScience 68(7):496-509. https://doi.org/10.1093/biosci/biy057.

Gigliotti, L. C., L. Keener, L. H. Swanepoel, C. Sholto-Douglas, A. Hunnicutt, and G. Curveira-Santos. 2023. Positive but un-sustained wildlife community responses to reserve expansion and mammal reintroductions in South Africa. Biological Conservation 287:110277. https://doi.org/10.1016/j.biocon.2023.110277.

Gilg, O., I. Hanski, and B. Sittler. 2003. Cyclic dynamics in a simple vertebrate predator-prey community. Science 302(5646):866-868. https://doi.org/10.1126/science.108750.

Gobin, J., T. J. Hossie, R. E. Derbyshire, S. Sonnega, T. W. Cambridge, L. Scholl, and D. L. Murray. 2022. Functional responses shape node and network level properties of a simplified boreal food web. Front Ecol Evol 10:898805. https://doi.org/10.3389/fevo.2022.898805.

González, P., and M. Pinto. 1996. Asymptotic behavior of impulsive differential equations. The Rocky Mountain Journal of Mathematics 26(1):165-173. URL: jstor.org/stable/44238007.

Green, S. J., C. B. Brookson, N. A. Hardy, and L. B. Crowder. 2022. Trait-based approaches to global change ecology: moving from description to prediction. Proceedings of the Royal Society B 289(1971):20220071.

Grigione, M. M., P. Beier, R. A. Hopkins, D. Neal, W. D. Padley, C. M. Schonewald, and M. L. Johnson. 2002. Ecological and allometric determinants of home‐range size for mountain lions (Puma concolor). Animal Conservation 5(4):317-324. https://doi.org/10.1017/S1367943002004079.

Hakl, R., M. Pinto, V. Tkachenko, and S. Trofimchuk. 2017. Almost periodic evolution systems with impulse action at state-dependent moments. Journal of Mathematical Analysis and Applications 446(1):1030-1045. https://doi.org/10.1016/j.jmaa.2016.09.024.

Hastings, A., J. E. Byers, J. A. Crooks, K. Cuddington, C. G. Jones, J. G. Lambrinos, and W. G. Wilson. 2007. Ecosystem engineering in space and time. Ecology Letters 10(2):153-164. https://doi.org/10.1111/j.1461-0248.2006.00997.x.

Hatton, I. A., A. P. Dobson, D. Storch, E. D. Galbraith, and M. Loreau. 2019. Linking scaling laws across eukaryotes. Proceedings of the National Academy of Sciences 116(43):21616-21622. https://doi.org/10.1073/pnas.1900492116.

Inskip, C., and A. Zimmermann. 2009. Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43(1):18-34. https://doi.org/10.1017/S003060530899030X.

IUCN (International Union for Conservation of Nature). 2017. The IUCN Red List of Threatened Species. IUCN, Gland.

Jansen, B. D., and J. A. Jenks. 2011. Estimating body mass of pumas (Puma concolor). Wildlife Research 38(2):147-151. https://doi.org/10.1071/WR10109.

Krebs, C. J., R. Boonstra, A. J. Kenney, and B. S. Gilbert. 2018. Hares and small rodent cycles: a 45-year perspective on predator-prey dynamics in the Yukon boreal forest. Australian Zoologist 39(4):724-732. https://doi.org/10.7882/AZ.2018.012.

LaBarge, L. R., M. J. Evans, J. R. Miller, G. Cannataro, C. Hunt, and L. M. Elbroch. 2022. Pumas Puma concolor as ecological brokers: a review of their biotic relationships. Mammal Review 52(3):360-376. https://doi.org/10.1111/mam.12281.

Lebreton, J. D., K. P. Burnham, J. Clobert, and D. R. Anderson. 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs 62(1):67-118. https://doi.org/10.2307/2937171.

Lu, W., M. Pinto, and Y. Xia. 2022. Smooth stable manifolds for the non-instantaneous impulsive equations with applications to Duffing oscillators. Proceedings of the Royal Society A 478(2259):20210957. https://doi.org/10.1098/rspa.2021.0957.

Marquet, P. A. 2002. Of predators, prey, and power laws. Science 295(5563):2229-2230. https://doi.org/10.1126/science.1070587.

Monk, J. D., J. A. Smith, E. Donadío, P. L. Perrig, R. D. Crego, M. Fileni, and A. D. Middleton. 2022. Cascading effects of a disease outbreak in a remote protected area. Ecology Letters 25(5):1152-1163. https://doi.org/10.1111/ele.13983.

Ortiz, E., R. Ramos-Jiliberto, and M. Arim. 2023. Prey selection along a predators’ body size gradient evidences the role of different trait-based mechanisms in food web organization. PLOS ONE 18(10):e0292374.

Osorio, C., A. Muñoz, N. Guarda, C. Bonacic, and M. Kelly. 2020. Exotic prey facilitate coexistence between Pumas and Culpeo Foxes in the Andes of central Chile. Diversity 12(9):317. https://doi.org/10.3390/d12090317.

Peckarsky, B. L., P. A. Abrams, D. I. Bolnick, L. M. Dill, J. H. Grabowski, B. Luttbeg, and G. C. Trussell. 2008. Revisiting the classics: considering nonconsumptive effects in textbook examples of predator-prey interactions. Ecology 89(9):2416-2425. https://doi.org/10.1890/07-1131.1.

Pinto, M., R. Torres, and D. Sepulveda. 2018. Exponential periodic attractor of impulsive Hopfield-type neural network system with piecewise constant argument. Electronic Journal of Qualitative Theory of Differential Equations 2018(34):1-28. https://doi.org/10.14232/ejqtde.2018.1.34.

Pyke, C. R., R. Thomas, R. D. Porter, J. J. Hellmann, S. Dukes, D. M. Lodge, and G. Chavarria. 2008. Current practices and future opportunities for policy on climate change and invasive species. Conservation Biology 22(3):585-592. https://doi.org/10.1111/j.1523-1739.2008.00956.x.

Pyšek, P., P. E. Hulme, D. Simberloff, S. Bacher, T. M. Blackburn, J. T. Carlton, and D. M. Richardson. 2020. Scientists' warning on invasive alien species. Biological Reviews 95(6):1511-1534. https://doi.org/10.1111/brv.12627.

Ripple, W. J., and R. L. Beschta. 2003. Wolf reintroduction, predation risk, and cottonwood recovery in Yellowstone National Park. Forest Ecology and Management 184(1-3):299-313. https://doi.org/10.1016/S0378-1127(03)00154-3.

Ripple, W. J., and R. L. Beschta. 2004. Wolves and the ecology of fear: Can predation risk structure ecosystems? BioScience 54(8):755–766. https://doi.org/10.1641/0006-3568(2004)054[0755:WATEOF]2.0.CO;2.

Ripple, W. J., and R. L. Beschta. 2012. Trophic cascades in Yellowstone: the first 15 years after wolf reintroduction. Biological Conservation 145(1):205-213. https://doi.org/10.1016/j.biocon.2011.11.005.

Ripple, W. J., and E. J. Larsen. 2000. Historic aspen recruitment, elk, and wolves in northern Yellowstone National Park, USA. Biological Conservation 95(3):361-370. https://doi.org/10.1016/S0006-3207(00)00014-8.

Ripple, W. J., J. A. Estes, R. L. Beschta, C. C. Wilmers, E. G. Ritchie, M. Hebblewhite, and A. J. Wirsing. 2014. Status and ecological effects of the world’s largest carnivores. Science 343(6167):1241484. https://doi.org/10.1126/science.12414.

Ripple, W. J., E. J. Larsen, R. A. Renkin, and D. W. Smith. 2001. Trophic cascades among wolves, elk and aspen on Yellowstone National Park’s northern range. Biological Conservation 102(3):227-234. https://doi.org/10.1016/S0006-3207(01)00107-0.

Ritchie, E. G., and C. N. Johnson. 2009. Predator interactions, mesopredator release and biodiversity conservation. Ecology Letters 12(9):982-998. https://doi.org/10.1111/j.1461-0248.2009.01347.x.

Ritchie, E. G., B. Elmhagen, A. S. Glen, M. Letnic, G. Ludwig, and R. A. McDonald. 2012. Ecosystem restoration with teeth: What role for predators? Trends in Ecology and Evolution 27(5):265-271. https://doi.org/10.1016/j.tree.2012.01.001.

Rogers, T. L., T. C. Gouhier, and D. L. Kimbro. 2018. Temperature dependency of intraguild predation between native and invasive crabs. Ecology 99(4):885-895. https://doi.org/10.1002/ecy.2157.

Samoilenko, A. M., and N. A. Perestyuk. 1995. Impulsive differential equations. World Scientific. https://doi.org/10.1142/2892.

Schmidt-Nielsen, K., and S. N. Knut. 1984. Scaling: why is animal size so important? Cambridge University Press. https://doi.org/10.1017/CBO9781139167826.

Séguin, A., É. Harvey, P. Archambault, C. Nozais, and D. Gravel. 2014. Body size as a predictor of species loss effect on ecosystem functioning. Scientific Reports 4(1):1-5. https://doi.org/10.1038/srep04616.

Sentis, A., C. Gémard, B. Jaugeon, and D. S. Boukal. 2017. Predator diversity and environmental change modify the strengths of trophic and nontrophic interactions. Global Change Biology 23(7):2629-2640. https://doi.org/10.1111/gcb.13560.

Shedden‐González, A., B. Solórzano‐García, J. M. White, P. K. Gillingham, and A. H. Korstjens. 2023. Drivers of jaguar (Panthera onca) and puma (Puma concolor) predation on endangered primates within a transformed landscape in southern Mexico. Biotropica 55(5):1058-1068. https://doi.org/10.1111/btp.13253.

Van de Wolfshaar, K. E., A. M. De Roos, and L. Persson. 2006. Size-dependent interactions inhibit coexistence in intraguild predation systems with life-history omnivory. The American Naturalist 168(1):62-75. https://doi.org/10.1086/505156.

Weitz, J. S., and S. A. Levin. 2006. Size and scaling of predator–prey dynamics. Ecology Letters 9(5):548-557. https://doi.org/10.1111/j.1461-0248.2006.00900.x.

Wilmers, C. C., Y. Wang, B. Nickel, P. Houghtaling, Y. Shakeri, M. L. Allen, and T. Williams. 2013. Scale dependent behavioral responses to human development by a large predator, the puma. PLOS ONE 8(4):e60590. https://doi.org/10.1371/journal.pone.0060590.

Yodzis, P., and S. Innes. 1992. Body size and consumer-resource dynamics. The American Naturalist 139(6):1151-1175. https://doi.org/10.1086/285380.

Body size modulates demographic patterns of top predators and their native and invasive prey: A biomathematical approach

Downloads

Additional Files

Published

2024-03-02

How to Cite

Campillay-Llanos, W., Pinto, M., & Osorio, C. (2024). Body size modulates demographic patterns of top predators and their native and invasive prey: A biomathematical approach. Ecología Austral, 34(1), 159–170. https://doi.org/10.25260/EA.24.34.1.0.2231