Plataformas de modelado de servicios ecosistémicos: El norte de la Patagonia como un ejemplo de caso aplicando k.LAB
DOI:
https://doi.org/10.25260/EA.23.33.3.0.2257Palabras clave:
calentamiento global, k.LAB, ARIES, InVEST, Google Earth Engine, Patagonia norte, secuestro de carbono, polinización, turismoResumen
Los avances tecnológicos y metodológicos de las últimas décadas (e.g., información satelital, potencia de los ordenadores, análisis geoespacial, desarrollo de algoritmos) facilitaron buscar soluciones a problemas complejos como el cambio global. Estos avances permitieron que surjan plataformas informáticas para modelar servicios ecosistémicos, que cuantifican los beneficios de la naturaleza y evalúan cómo son o serán afectados por acciones humanas. Actualmente, existen variadas plataformas con diferentes grados de aptitud según el contexto, destacándose k.LAB por ser gratuita, de código abierto y presentar un enfoque de ciencia colaborativa, además de integrar diferentes técnicas de modelado con inteligencia artificial. k.LAB es muy versátil para responder a las demandas de diferentes usos, desde programar y modelar SE hasta tomar decisiones. Sin embargo, quienes cuantifican y mapean SE, especialmente en Latinoamérica, tienen escaso conocimiento de k.LAB; esto dificulta aprovechar su potencial, tal como sucedió con herramientas de acceso libre y código abierto (e.g., la adopción de R requirió tiempo, revisiones, discusiones y materiales didácticos en revistas especializadas). Este trabajo presenta las capacidades de k.LAB en el contexto de las plataformas de modelado de SE. Primero, introducimos estas plataformas en términos generales, con énfasis en las más usadas. Luego, caracterizamos k.LAB técnica y filosóficamente. Después, presentamos un caso de estudio en el norte de la Patagonia argentina, ilustrando la obtención de mapas de tres SE (captura de carbono, polinización y recreación al aire libre) utilizando aplicaciones de modelado dirigidas a personas sin experiencia en programación. Finalmente, establecemos características deseables en las plataformas de modelado de SE para discutir ventajas y limitaciones de k.LAB en relación con otras alternativas. Esperamos brindar un marco general útil para el modelado de SE y ampliar el conjunto de herramientas para abordar problemáticas vinculadas al cambio global en la Argentina y otros países de la región.
Citas
Alcaraz-Segura, D., C. M. Di Bella, and J. V. Straschnoy. 2013. Earth observation of ecosystem services. CRC Press. https://doi.org/10.2989/10220119.2014.946537.
Allen-Perkins, A., A. Magrach, M. Dainese, L. A. Garibaldi, D. Kleijn, et al. 2022. CropPol: A dynamic, open and global database on crop pollination. Ecology 103(3):e3614 https://doi.org/10.1002/ecy.3614.
Arnold, J. G., and N. Fohrer, N. 2005. SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrological Processes 19:563e572. https://doi.org/10.1002/hyp.5611.
Bagstad, K. J., D. J. Semmens, S. Waage, and R. Winthrop. 2013. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosystem Services 5:e27-e39. https://doi.org/10.1016/j.ecoser.2013.07.004.
Balvanera, P., S. Quijas, D. S. Karp, N. Ash, E. M. Benett, et al. 2017. Ecosystem Services. In Walters, M. and R. Scholes (eds.). The GEO Handbook on Biodiversity Observation Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-27288-7_3.
Balbi, S., K. J. Bagstad, A. Magrach, M. J. Sanz, N. Aguilar‑Amuchastegui, et al. 2022. The global environmental agenda urgently needs a semantic web of knowledge. Environmental Evidence 11:5. https://doi.org/10.1186/s13750-022-00258-y.
Boumans, R., J. Roman, I. Altman, and L. Kaufman. 2015. The Multiscale Integrated Model of Ecosystem Services (MIMES): Simulating the interactions of coupled human and natural systems. Ecosystem Services 12:30-41. https://doi.org/10.1016/j.ecoser.2015.01.004.
Buchhorn, M., M. Lesiv, N. E. Tsendbazar, M. Herold, L. Bertels, and B. Smets. 2020. Copernicus global land cover layers-collection 2. Remote Sensing 12(6):1044. https://doi.org/10.3390/rs12061044.
Büttner, G. 2014. CORINE land cover and land cover change products. In Land use and land cover mapping in Europe. Springer, Dordrecht. Pp. 55-74. https://doi.org/10.1007/978-94-007-7969-3_5.
Chuvieco, E. 2002. Teledetección Ambiental, Barcelona, Ariel.
Christakos, G., P. Bogaert, and M. Serre. 2002. Temporal GIS: advanced functions for field-based applications. Springer Science and Business Media. https://doi.org/10.1007/978-3-642-56540-3.
Coatz, D., F. García Díaz, and S. Woyecheszen. 2011. El rompecabezas productivo argentino. Boletín Informativo Techint 334:17-43.
Díaz, S., U. Pascual, M. Stenseke, B. Martín-López, R. T. Watson, et al. 2018. Assessing nature’s contributions to people. Science Magazine 359:6373. https://doi.org/10.1126/science.aap8826.
Dunford, R. W., P. A. Harrison, and K. J. Bagstad. 2017. Computer modelling for ecosystem service assessment. En B. Burkhard and J. Maes (eds.). Mapping Ecosystem Services. Pensoft Publishers, Sofia.
Giménez-García, A., A. Allen-Perkins, I. Bartomeus, et al. 2023. Pollination supply models from a local to global scale. Web Ecol 23:99-129. https://doi.org/10.5194/we-23-99-2023.
Goldenberg, M. G., Y. A. Cardoso, F. J. Oddi, and L. A. Garibaldi. 2020. Fuelwood energy characteristics and biomass equations of the dominant species of northern Patagonia shrublands (Argentina). Southern Forests 82:56-64. https://doi.org/10.2989/20702620.2019.1686693.
Gomes, V. C. F., G. R. Queiroz, and K. R. Ferreira. 2020. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sensing 12:1253. https://doi.org/10.3390/rs12081253.
Grêt‐Regamey, A., E. Sirén, S. H. Brunner, and B. Weibel. 2017. Review of decision support tools to operationalize the ecosystem services concept. Ecosystem Services 26:306-315. https://doi.org/10.1016/j.ecoser.2016.10.012.
FAO. 2021. El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura - Sistemas al límite. Informe de síntesis 2021. Rome. https://doi.org/10.4060/cb7654es.
Haines-Young, R., and M. Potschin. 2010. The links between biodiversity, ecosystem services and human well-being. Pp. 110-139 en D. G. Rafaelli and C. L. J. Frid (eds.). Ecosystem Ecology: A New Synthesis. Cambridge University Press. https://doi.org/10.1017/CBO9780511750458.007.
Hamilton, S. H., S. ElSawah, J. H. Guillaume, A. J. Jakeman, and S. A. Pierce. 2015. Integrated assessment and modelling: overview and synthesis of salient dimensions. Environmental Modelling and Software 64:215-229. https://doi.org/10.1016/j.envsoft.2014.12.005.
Harrison, P. A., R. Dunford, D. N. Barton, E. Kelemen, B. Martín-López, et. al. 2018. Selecting methods for ecosystem service assessment: A decision tree approach. Ecosystem Services 29:481-498. https://doi.org/10.1016/j.ecoser.2017.09.016.
Jax, K., E. Furman, H. Saarikoski, D. N. Barton, B. Delbaere, et al. 2018. Handling a messy world: Lessons learned when trying to make the ecosystem services concept operational. Ecosystem Services 29:415-427. https://doi.org/10.1016/j.ecoser.2017.08.001.
IPBES. 2016. The assessment report on pollinators, pollination and food production of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. En S. G. Potts, V. L. Imperatriz-Fonseca and H. T. Ngo (eds.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany. https://doi.org/10.5281/zenodo.3402856.
IPBES. 2019. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. En E. S. Brondizio, J. Settele, S. Díaz and H. T. Ngo (eds.). Secretariat of the Intergovernmental Science-Policy Platform, Bonn, Germany. https://doi.org/10.5281/zenodo.3831673.
Jackson, B., T. Pagella, F. Sinclair, B. Orellana, A. Henshaw, et al. B. 2013. Polyscape: A GIS mapping framework providing efficiency and spatially explicit landscale-scale valuation of multiple ecosystem services. Landscape and Urban Planning 112:74-88. https://doi.org/10.1016/j.landurbplan.2012.12.014.
Khan, I., F. Hou, and H. Phong Le. 2021. The impact of natural resources, energy consumption, and population growth on environmental quality: Fresh evidence from the United States of America. Science of The Total Environment 754:142222. https://doi.org/10.1016/j.scitotenv.2020.142222.
Klein, A. M., B. E. Vaissière, J. H. Cane, I. Steffan-Dewenter, S. A. Cunningham, et al. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274:303-313. https://doi.org/10.1098/rspb.2006.3721.
Liu, T., Z. L. Yu, X. Chen, B. Cao, X. Li, et al. 2022. Global relative ecosystem service budget mapping using the Google Earth Engine and land cover datasets. Environmental Research Communication 4:065002. https://doi.org/10.1088/2515-7620/ac79a9.
Lonsdorf, E., C. Kremen, T. Ricketts, R. Winfree, N. Williams, et al. 2009. Modelling pollination services across agricultural landscapes. Annals of Botany 103(9):1589-1600. https://doi.org/10.1093/aob/mcp069.
Malinga, R., Gordon, L. J., Jewitt, G., and Lindborg, R. 2015. Mapping ecosystem services across scales and continents - A review. Ecosystem Services 13:57-63. https://doi.org/10.1016/j.ecoser.2015.01.006.
Márquez Torres, A., S. Balbi, and F. Villa. 2023b. Scientific modelling can be accessible, interoperable and user friendly: A case study for pasture and livestock modelling in Spain. PloS ONE 18:e0281348. https://doi.org/10.1371/journal.pone.0281348.
Márquez Torres, A., G. Signorello, S. Kumar, G. Adamo, F. Villa et al. 2023b. Fire risk: an integrated modelling approach. EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2023-138.
Martínez-López, J., K. J. Bagstad, S. Balbi, A. Magrach, B. Voigt, et al. 2019. Towards globally customizable ecosystem service models. Science of the Total Environment 650:2325-2336. https://doi.org/10.1016/j.scitotenv.2018.09.371.
Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-Being. Island Press, Washington, DC.
Mulligan, M. 2015. Trading off agriculture with nature's other benefits, spatially. En C. A. Zolin and R. A. R. Rodrigues (eds.). Impact of Climate Change on Water Resources in Agriculture. CRC Press. https://doi.org/10.1201/b18652.
Nayak, D., and P. Smith. 2019. Review and Comparison of Models used for Land Allocation and Nature Valuation. University of Aberdeen.
Nelson, E., G. Mendoza, J. Regetz, S. Polasky, H. Tallis, et al. 2009. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment 7(1):4-11. https://doi.org/10.1890/080023.
Nemec, K. T., and C. Raudsepp-Hearne. 2013. The use of geographic information systems to map and assess ecosystem services. Biodiversity and Conservation 22:1-15. https://doi.org/10.1007/s10531-012-0406-z.
Ochoa, V., and N. Urbina-Cardona. Tools for spatially modeling ecosystem services: Publication trends, conceptual reflections and future challenges. Ecosystem Services 26:155-169. https://doi.org/10.1016/j.ecoser.2017.06.011.
Palomo, I., K. J. Bagstad, S. Nedkov, H. Klug, M. Adamescu, et al. 20.17. Tools for mapping ecosystem services. En B. Burkhard and J. Maes (eds.). Mapping Ecosystem Services. Pensoft Publishers, Sofia.
Paracchini, M. L., G. Zulian, L. Kopperoinen, J. Maes, J. P. Schägner, et al. 2014. Mapping cultural ecosystem services: a framework to assess the potential for outdoor recreation across the EU. Ecological Indicators 45:371-385. https://doi.org/10.1016/j.ecolind.2014.04.018.
Posner, S., G. Verutes, I. Koh, D. Denu, and T. Ricketts. 2016. Global use of ecosystem service models. Ecosystem Services 17:131-141. https://doi.org/10.1016/j.ecoser.2015.12.003.
Perrings, C., A. Duraiappah, A. Larigauderie, and H. Mooney. 2011. The Biodiversity and Ecosystem Services Science-Policy Interface Assessments must provide conditional predictions of the consequences of specific policy options, at well-defined spatial and temporal scales. Science 331(6021):1139-1140. https://doi.org/10.1126/science.1202400.
Pörtner, H. O., R. J. Scholes, J. Agard, E. Archer, A. Arneth, et al. 2021. IPBES-IPCC co-sponsored workshop report on biodiversity and climate change. IPBES and IPCC. https://doi.org/10.5281/zenodo.4782538.
Ramírez-Reyes, C., K. A. Brauman, R. Chaplin-Kramer, G. L. Galford, S. B. Adamo, et al. 2019. Reimagining the potential of Earth observations for ecosystem service assessments. Science of the Total Environment 665:1053-1063. https://doi.org/10.1016/j.scitotenv.2019.02.150.
Ruiz, I., J. Pompeu, A. Ruano, P. Franco, S. Balbi et al. 2023. Combined artificial intelligence, sustainable land management, and stakeholder engagement for integrated landscape management in Mediterranean watersheds. Environmental Science and Policy 145:217-227. https://doi.org/10.1016/j.envsci.2023.04.011.
Sachs, J., C. Kroll, G. Lafortune, G. Fuller, and F. Woelm. 2021. Sustainable development report 2021. Cambridge University Press. https://doi.org/10.1017/9781009106559.
Seto, K. C., B. Güneralp, and L. R. Hutyra. 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences 109(40):16083-16088. https://doi.org/10.1073/pnas.1211658109.
Sharp, R., H. T. Tallis, T, Ricketts, A. D. Guerry, S. A. Wood, et al. InVEST+ VERSION+ User's Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.
Sharps, K., D. Masante, A. Thomas, B. Jackson, J. Redhead et al. 2017. Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment. Science of the Total Environment 584-585:118-130. https://doi.org/10.1016/j.scitotenv.2016.12.160.
Terrer, C., R. P. Phillips, B. A. Hungate, J. Rosende, J. Pett-Ridge, et al. 2021. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591:599-603. https://doi.org/10.1038/s41586-021-03306-8.
Villa, F., K. J. Bagstad, B. Voigt, G. W. Johnson, R. Portela, et al. 2014. A methodology for adaptable and robust ecosystem services assessment. PLoS ONE 9(3):e91001. https://doi.org/10.1371/journal.pone.0091001.
Vigerstol, K. L., and J. Aukema. 2011. A comparison of tools for modeling freshwater ecosystem services. Journal of Environmental Management 92:2403-2409. https://doi.org/10.1016/j.jenvman.2011.06.040.
Wilkinson, M., M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3:160018. https://doi.org/10.1038/sdata.2016.18.
Zhao, Q., L. Yu, X. Li, D. Peng, Y. Zhang, et al. 2021. Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sensing 13:3778. https://doi.org/10.3390/rs13183778.
Zulian, G., C. Polce, and J. Maes. 2014. ESTIMAP: a GIS-based model to map ecosystem services in the European Union. Annali di Botanica 4:1-7. https://doi.org/10.4462/annbotrm-11807.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Facundo J. Oddi, Alba Márquez Torres, João A. Pompeu, Ainhoa Magrach, Stefano Balbi, Ferdinando Villa, Lucas A. Garibaldi
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Las/os autoras/es conservan sus derechos de autoras/es: 1) cediendo a la revista el derecho a su primera publicación, y 2) registrando el artículo publicado con una Licencia de Atribución de Creative Commons (CC-BY 4.0), lo que permite a autoras/es y terceros verlo y utilizarlo siempre que mencionen claramente su origen (cita o referencia incluyendo autoría y primera publicación en esta revista). Las/os autores/as pueden hacer otros acuerdos de distribución no exclusiva siempre que indiquen con claridad su origen, así como compartir y divulgar ampliamente la versión publicada de su trabajo.