Platforms for ecosystem services modeling: An applied example to the northern Patagonia
DOI:
https://doi.org/10.25260/EA.23.33.3.0.2257Keywords:
global change, k.LAB, ARIES, Google Earth Engine, northern Patagonia, carbon sequestration, pollination, tourismAbstract
In recent decades, technological and methodological advances, such as satellite information, computer power, geospatial analysis and algorithm development have facilitated the search for solutions to complex problems like global change. These advances resulted in the development of platforms for ecosystem services (ES) modeling, which quantifies nature’s benefits and evaluates the effects of human activity. Currently, various platforms are available, each with different characteristics that make them more suitable depending on the context. Among these platforms, k.LAB stands out for being free, open source and based on collaborative science. It also utilizes artificial intelligence to integrate different modeling approaches. One of its main advantages is its versatility in meeting the needs of different users, from programmers and modelers to decision makers. However, k.LAB is relatively unknown among those who quantify and map ES, especially in Latin America. This limits its potential utilization, similar to what has been observed with other freely accessible and open-source tools like R. The adoption of such tools typically requires time to develop tutorials, reviews and discussions in specialized journals. The objective of this paper is to introduce the capabilities of k.LAB within the context of SE modeling platforms. We first provide an overview of ES modeling platforms, highlighting some of the most widely used ones. Then, we delve into the technical and philosophical aspects that characterize k.LAB. Subsequently, we present a case study focused on the northern region of Argentinean Patagonia, where we utilize modeling applications to map three ES (carbon sequestration, pollination, and outdoor recreation) for users with no programming experience. Finally, we outline desirable features of SE modeling platforms and discuss some of the advantages and limitations of k.LAB compared to other alternatives. We hope that this material offers a useful general framework for SE modeling and expands the range of tools available to address global change issues in Argentina and the rest of the countries in the region.
References
Alcaraz-Segura, D., C. M. Di Bella, and J. V. Straschnoy. 2013. Earth observation of ecosystem services. CRC Press. https://doi.org/10.2989/10220119.2014.946537.
Allen-Perkins, A., A. Magrach, M. Dainese, L. A. Garibaldi, D. Kleijn, et al. 2022. CropPol: A dynamic, open and global database on crop pollination. Ecology 103(3):e3614 https://doi.org/10.1002/ecy.3614.
Arnold, J. G., and N. Fohrer, N. 2005. SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrological Processes 19:563e572. https://doi.org/10.1002/hyp.5611.
Bagstad, K. J., D. J. Semmens, S. Waage, and R. Winthrop. 2013. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosystem Services 5:e27-e39. https://doi.org/10.1016/j.ecoser.2013.07.004.
Balvanera, P., S. Quijas, D. S. Karp, N. Ash, E. M. Benett, et al. 2017. Ecosystem Services. In Walters, M. and R. Scholes (eds.). The GEO Handbook on Biodiversity Observation Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-27288-7_3.
Balbi, S., K. J. Bagstad, A. Magrach, M. J. Sanz, N. Aguilar‑Amuchastegui, et al. 2022. The global environmental agenda urgently needs a semantic web of knowledge. Environmental Evidence 11:5. https://doi.org/10.1186/s13750-022-00258-y.
Boumans, R., J. Roman, I. Altman, and L. Kaufman. 2015. The Multiscale Integrated Model of Ecosystem Services (MIMES): Simulating the interactions of coupled human and natural systems. Ecosystem Services 12:30-41. https://doi.org/10.1016/j.ecoser.2015.01.004.
Buchhorn, M., M. Lesiv, N. E. Tsendbazar, M. Herold, L. Bertels, and B. Smets. 2020. Copernicus global land cover layers-collection 2. Remote Sensing 12(6):1044. https://doi.org/10.3390/rs12061044.
Büttner, G. 2014. CORINE land cover and land cover change products. In Land use and land cover mapping in Europe. Springer, Dordrecht. Pp. 55-74. https://doi.org/10.1007/978-94-007-7969-3_5.
Chuvieco, E. 2002. Teledetección Ambiental, Barcelona, Ariel.
Christakos, G., P. Bogaert, and M. Serre. 2002. Temporal GIS: advanced functions for field-based applications. Springer Science and Business Media. https://doi.org/10.1007/978-3-642-56540-3.
Coatz, D., F. García Díaz, and S. Woyecheszen. 2011. El rompecabezas productivo argentino. Boletín Informativo Techint 334:17-43.
Díaz, S., U. Pascual, M. Stenseke, B. Martín-López, R. T. Watson, et al. 2018. Assessing nature’s contributions to people. Science Magazine 359:6373. https://doi.org/10.1126/science.aap8826.
Dunford, R. W., P. A. Harrison, and K. J. Bagstad. 2017. Computer modelling for ecosystem service assessment. En B. Burkhard and J. Maes (eds.). Mapping Ecosystem Services. Pensoft Publishers, Sofia.
Giménez-García, A., A. Allen-Perkins, I. Bartomeus, et al. 2023. Pollination supply models from a local to global scale. Web Ecol 23:99-129. https://doi.org/10.5194/we-23-99-2023.
Goldenberg, M. G., Y. A. Cardoso, F. J. Oddi, and L. A. Garibaldi. 2020. Fuelwood energy characteristics and biomass equations of the dominant species of northern Patagonia shrublands (Argentina). Southern Forests 82:56-64. https://doi.org/10.2989/20702620.2019.1686693.
Gomes, V. C. F., G. R. Queiroz, and K. R. Ferreira. 2020. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sensing 12:1253. https://doi.org/10.3390/rs12081253.
Grêt‐Regamey, A., E. Sirén, S. H. Brunner, and B. Weibel. 2017. Review of decision support tools to operationalize the ecosystem services concept. Ecosystem Services 26:306-315. https://doi.org/10.1016/j.ecoser.2016.10.012.
FAO. 2021. El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura - Sistemas al límite. Informe de síntesis 2021. Rome. https://doi.org/10.4060/cb7654es.
Haines-Young, R., and M. Potschin. 2010. The links between biodiversity, ecosystem services and human well-being. Pp. 110-139 en D. G. Rafaelli and C. L. J. Frid (eds.). Ecosystem Ecology: A New Synthesis. Cambridge University Press. https://doi.org/10.1017/CBO9780511750458.007.
Hamilton, S. H., S. ElSawah, J. H. Guillaume, A. J. Jakeman, and S. A. Pierce. 2015. Integrated assessment and modelling: overview and synthesis of salient dimensions. Environmental Modelling and Software 64:215-229. https://doi.org/10.1016/j.envsoft.2014.12.005.
Harrison, P. A., R. Dunford, D. N. Barton, E. Kelemen, B. Martín-López, et. al. 2018. Selecting methods for ecosystem service assessment: A decision tree approach. Ecosystem Services 29:481-498. https://doi.org/10.1016/j.ecoser.2017.09.016.
Jax, K., E. Furman, H. Saarikoski, D. N. Barton, B. Delbaere, et al. 2018. Handling a messy world: Lessons learned when trying to make the ecosystem services concept operational. Ecosystem Services 29:415-427. https://doi.org/10.1016/j.ecoser.2017.08.001.
IPBES. 2016. The assessment report on pollinators, pollination and food production of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. En S. G. Potts, V. L. Imperatriz-Fonseca and H. T. Ngo (eds.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany. https://doi.org/10.5281/zenodo.3402856.
IPBES. 2019. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. En E. S. Brondizio, J. Settele, S. Díaz and H. T. Ngo (eds.). Secretariat of the Intergovernmental Science-Policy Platform, Bonn, Germany. https://doi.org/10.5281/zenodo.3831673.
Jackson, B., T. Pagella, F. Sinclair, B. Orellana, A. Henshaw, et al. B. 2013. Polyscape: A GIS mapping framework providing efficiency and spatially explicit landscale-scale valuation of multiple ecosystem services. Landscape and Urban Planning 112:74-88. https://doi.org/10.1016/j.landurbplan.2012.12.014.
Khan, I., F. Hou, and H. Phong Le. 2021. The impact of natural resources, energy consumption, and population growth on environmental quality: Fresh evidence from the United States of America. Science of The Total Environment 754:142222. https://doi.org/10.1016/j.scitotenv.2020.142222.
Klein, A. M., B. E. Vaissière, J. H. Cane, I. Steffan-Dewenter, S. A. Cunningham, et al. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274:303-313. https://doi.org/10.1098/rspb.2006.3721.
Liu, T., Z. L. Yu, X. Chen, B. Cao, X. Li, et al. 2022. Global relative ecosystem service budget mapping using the Google Earth Engine and land cover datasets. Environmental Research Communication 4:065002. https://doi.org/10.1088/2515-7620/ac79a9.
Lonsdorf, E., C. Kremen, T. Ricketts, R. Winfree, N. Williams, et al. 2009. Modelling pollination services across agricultural landscapes. Annals of Botany 103(9):1589-1600. https://doi.org/10.1093/aob/mcp069.
Malinga, R., Gordon, L. J., Jewitt, G., and Lindborg, R. 2015. Mapping ecosystem services across scales and continents - A review. Ecosystem Services 13:57-63. https://doi.org/10.1016/j.ecoser.2015.01.006.
Márquez Torres, A., S. Balbi, and F. Villa. 2023b. Scientific modelling can be accessible, interoperable and user friendly: A case study for pasture and livestock modelling in Spain. PloS ONE 18:e0281348. https://doi.org/10.1371/journal.pone.0281348.
Márquez Torres, A., G. Signorello, S. Kumar, G. Adamo, F. Villa et al. 2023b. Fire risk: an integrated modelling approach. EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2023-138.
Martínez-López, J., K. J. Bagstad, S. Balbi, A. Magrach, B. Voigt, et al. 2019. Towards globally customizable ecosystem service models. Science of the Total Environment 650:2325-2336. https://doi.org/10.1016/j.scitotenv.2018.09.371.
Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-Being. Island Press, Washington, DC.
Mulligan, M. 2015. Trading off agriculture with nature's other benefits, spatially. En C. A. Zolin and R. A. R. Rodrigues (eds.). Impact of Climate Change on Water Resources in Agriculture. CRC Press. https://doi.org/10.1201/b18652.
Nayak, D., and P. Smith. 2019. Review and Comparison of Models used for Land Allocation and Nature Valuation. University of Aberdeen.
Nelson, E., G. Mendoza, J. Regetz, S. Polasky, H. Tallis, et al. 2009. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment 7(1):4-11. https://doi.org/10.1890/080023.
Nemec, K. T., and C. Raudsepp-Hearne. 2013. The use of geographic information systems to map and assess ecosystem services. Biodiversity and Conservation 22:1-15. https://doi.org/10.1007/s10531-012-0406-z.
Ochoa, V., and N. Urbina-Cardona. Tools for spatially modeling ecosystem services: Publication trends, conceptual reflections and future challenges. Ecosystem Services 26:155-169. https://doi.org/10.1016/j.ecoser.2017.06.011.
Palomo, I., K. J. Bagstad, S. Nedkov, H. Klug, M. Adamescu, et al. 20.17. Tools for mapping ecosystem services. En B. Burkhard and J. Maes (eds.). Mapping Ecosystem Services. Pensoft Publishers, Sofia.
Paracchini, M. L., G. Zulian, L. Kopperoinen, J. Maes, J. P. Schägner, et al. 2014. Mapping cultural ecosystem services: a framework to assess the potential for outdoor recreation across the EU. Ecological Indicators 45:371-385. https://doi.org/10.1016/j.ecolind.2014.04.018.
Posner, S., G. Verutes, I. Koh, D. Denu, and T. Ricketts. 2016. Global use of ecosystem service models. Ecosystem Services 17:131-141. https://doi.org/10.1016/j.ecoser.2015.12.003.
Perrings, C., A. Duraiappah, A. Larigauderie, and H. Mooney. 2011. The Biodiversity and Ecosystem Services Science-Policy Interface Assessments must provide conditional predictions of the consequences of specific policy options, at well-defined spatial and temporal scales. Science 331(6021):1139-1140. https://doi.org/10.1126/science.1202400.
Pörtner, H. O., R. J. Scholes, J. Agard, E. Archer, A. Arneth, et al. 2021. IPBES-IPCC co-sponsored workshop report on biodiversity and climate change. IPBES and IPCC. https://doi.org/10.5281/zenodo.4782538.
Ramírez-Reyes, C., K. A. Brauman, R. Chaplin-Kramer, G. L. Galford, S. B. Adamo, et al. 2019. Reimagining the potential of Earth observations for ecosystem service assessments. Science of the Total Environment 665:1053-1063. https://doi.org/10.1016/j.scitotenv.2019.02.150.
Ruiz, I., J. Pompeu, A. Ruano, P. Franco, S. Balbi et al. 2023. Combined artificial intelligence, sustainable land management, and stakeholder engagement for integrated landscape management in Mediterranean watersheds. Environmental Science and Policy 145:217-227. https://doi.org/10.1016/j.envsci.2023.04.011.
Sachs, J., C. Kroll, G. Lafortune, G. Fuller, and F. Woelm. 2021. Sustainable development report 2021. Cambridge University Press. https://doi.org/10.1017/9781009106559.
Seto, K. C., B. Güneralp, and L. R. Hutyra. 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences 109(40):16083-16088. https://doi.org/10.1073/pnas.1211658109.
Sharp, R., H. T. Tallis, T, Ricketts, A. D. Guerry, S. A. Wood, et al. InVEST+ VERSION+ User's Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.
Sharps, K., D. Masante, A. Thomas, B. Jackson, J. Redhead et al. 2017. Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment. Science of the Total Environment 584-585:118-130. https://doi.org/10.1016/j.scitotenv.2016.12.160.
Terrer, C., R. P. Phillips, B. A. Hungate, J. Rosende, J. Pett-Ridge, et al. 2021. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591:599-603. https://doi.org/10.1038/s41586-021-03306-8.
Villa, F., K. J. Bagstad, B. Voigt, G. W. Johnson, R. Portela, et al. 2014. A methodology for adaptable and robust ecosystem services assessment. PLoS ONE 9(3):e91001. https://doi.org/10.1371/journal.pone.0091001.
Vigerstol, K. L., and J. Aukema. 2011. A comparison of tools for modeling freshwater ecosystem services. Journal of Environmental Management 92:2403-2409. https://doi.org/10.1016/j.jenvman.2011.06.040.
Wilkinson, M., M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3:160018. https://doi.org/10.1038/sdata.2016.18.
Zhao, Q., L. Yu, X. Li, D. Peng, Y. Zhang, et al. 2021. Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sensing 13:3778. https://doi.org/10.3390/rs13183778.
Zulian, G., C. Polce, and J. Maes. 2014. ESTIMAP: a GIS-based model to map ecosystem services in the European Union. Annali di Botanica 4:1-7. https://doi.org/10.4462/annbotrm-11807.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Facundo J. Oddi, Alba Márquez Torres, João A. Pompeu, Ainhoa Magrach, Stefano Balbi, Ferdinando Villa, Lucas A. Garibaldi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.