NDVI dynamics in different phases of the ENSO phenomenon in the Laguna Blanca Biosphere Reserve (Catamarca, Argentina)

Authors

  • Alejandro E. Maggi Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Manejo y Conservación de Suelos. http://orcid.org/0000-0002-6258-0325
  • Karen D. Ponieman Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Manejo y Conservación de Suelos.
  • Nicolás G. Castro Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Manejo y Conservación de Suelos.
  • Miguel Di Ferdinando Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Manejo y Conservación de Suelos.

DOI:

https://doi.org/10.25260/EA.20.30.1.0.1021

Abstract

El Niño-Southern Oscillation (ENSO) is an oceanic-climatic phenomenon which shows two contrasting phases and an intermediate or neutral phase that affect different regions of the world. In some ecoregions of northwestern Argentina (NOA), these phases would induce years with lower or higher rainfall than the historical average, corresponding to El Niño and La Niña, respectively. These differences in water availability cause changes in vegetation cover and land degradation, as well. Changes in the water regime due to natural or anthropic causes, which affect the productivity of different ecosystems, can be inferred through differences in spectral indices, such as NDVI (Normalized Difference Vegetation Index). The main objectives of this research were to characterize the dynamics of the vegetation cover estimated by mean of NDVI and study the temporal relationships among ENSO, rainfall and NDVI in the most conspicuous communities of the Puna in the Laguna Blanca Biosphere Reserve. NDVI data from the MODIS sensor (Moderate Resolution Imaging Spectroradiometer) were obtained from a published map of plant communities in the reserve; precipitation, from the GPCC (Global Precipitation Climatology Center), and the El Niño Oceanic Index (ONI), from the National Oceanic and Atmospheric Administration (NOAA). The highest difference of this last index among the different phases of the ENSO was reached between September and February. As a consequence of the monsoon regime, rainfall reached its peak a quarter later, being the highest in La Niña events. The maximum NDVI also showed a delay of one to two quarters with respect to ONI depending on the community considered. Results suggest that there is a connection among NDVI, rainfall and ENSO phases in Catamarca´s Puna. In extreme years La Niña and El Niño, both in steppes of the arid and semi-arid Puna, significant differences in NDVI values were observed. The results suggest that ONI monitoring would allow anticipating the application of appropriate strategies for desertification control.

https://doi.org/10.25260/EA.20.30.1.0.1021

Author Biography

Alejandro E. Maggi, Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Manejo y Conservación de Suelos.

Facultad de Agronomía Pabellon Arata Cátedra de Manejo y Conservación de Suelos. Profesor .

References

Agosta, E. A., and R. H. Compagnucci. 2008. The 1976/77 austral summer climate transition effects on the atmospheric circulation and climate in southern South America. Journal of Climate 21(17):4365-4383. https://doi.org/10.1175/2008JCLI2137.1.

Anyamba, A., E. Glennie, and J. Small. 2018. Teleconnections and Interannual Transitions as Observed in African Vegetation: 2015-2017. Remote Sensing 10(7):1038. https://doi.org/10.3390/rs10071038.

Anyamba, A., C. J. Tucker, and R. Mahoney. 2002. From El Niño to La Niña: Vegetation Response Patterns over East and Southern Africa during the 1997-2000 Period. Journal of Climate 15:3096-3103. https://doi.org/10.1175/1520-0442(2002)015%3C3096:FENOTL%3E2.0.CO;2.

Anyamba, A., and C. J. Tucker. 2005. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981-2003. Journal of Arid Environments 63:596-614. https://doi.org/10.1016/j.jaridenv.2005.03.007.

Aralova, D., K. Toderich, B. Jarihani, D. Gafurov, and L. Gismatulina. 2016. Monitoring of vegetation condition using the NDVI/ENSO anomalies in Central Asia and their relationships with ONI (very strong) phases. In Earth Resources and Environmental Remote Sensing/GIS Applications VII (Vol. 10005, Pp. 1000512). International Society for Optics and Photonics. https://doi.org/10.1117/12.2242164.

Baldassini, P., J. N. Volante, L. M. Califano, and J. M. Paruelo. 2012. Caracterización regional de la estructura y de la productividad de la vegetación de la puna mediante el uso de imágenes MODIS. Ecología Austral 22:22-32.

Barrera, D. F., and A. E. Maggi. 2018. Variabilidad de la precipitación en el altiplano argentino. Incidencia de la transición climática 1976/1977 y del Fenómeno El Niño-Oscilación del Sur en el Noroeste Argentino. Revista Meteorológica 43(1):41-71

Barros, V. 2004. Cambio climático global. Libros del zorzal.

Barros, V. R., and I. Camilloni. 2016. La Argentina y el cambio climático: de la física a la política. Eudeba. Pp. 286.

Bennett, M., M. New, J. Marino, and C. Sillero-Zubiri. 2016. Climate complexity in the Central Andes: a study case on empirically-based local variations in the Dry Puna. Journal of Arid Environments 128:40-49. https://doi.org/10.1016/j.jaridenv.2016.01.004.

Borgnia, M., A. E. Maggi, M. Arriaga, B. Aued, B. L. Vilá, and M. H. Cassini. 2006. Caracterización de la vegetación en la Reserva de Biósfera Laguna Blanca (Catamarca, Argentina). Ecología Austral 16:29-45.

Cabrera, A. L. 1976. Regiones fitogeográficas argentinas. En W. F. Kugler (ed.). Enciclopedia argentina de agricultura y jardinería 2(1):1-85. Ed. Acme, Buenos Aires, Argentina.

Carlson, T. N., and D. A. Ripley. 1997. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sensing of Environment 62:241-252. https://doi.org/10.1016/S0034-4257(97)00104-1.

Chen, M., W. J. Parton, S. J. Del Grosso, M. D. Hartman, K. A. Day, C. J. Tucker, J. D. Derner, A. Knapp, W. K. Smith, D. S. Ojima, and W. Gao. 2017. The signature of sea surface temperature anomalies on the dynamics of semiarid grassland productivity. Ecosphere 8(12):e02069. https://doi.org/10.1002/ecs2.2069.

Espoz-Alsina, C., S. M. Navone, and A. E. Maggi. 2002. Development of a desertification assessment method using a geographic information system: a case study in northwestern Argentina. Management Information Systems 2002: Incorporating Gis and Remote Sensing (Management Information Systems, V. 4)-US-ISBN:1853129070 (Hard cover book) Publisher: Wit Pr/Computational Mechanics Published 2002/02BakeryTaylor. Pp. 448.

Fabricante, I., M. Oesterheld, and J. M. Paruelo. 2009. Annual and seasonal variation of NDVI explained by current and previous precipitation across Northern Patagonia. Journal of Arid Environments 73(8):745-753. https://doi.org/10.1016/j.jaridenv.2009.02.006.

First, P. J. 2019. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. Sustainable Development, and Efforts to Eradicate Poverty. URL: www.ipcc.ch/sr15/.

Gaitán, J. J., D. Bran, G. Oliva, G. Ciari, V. Nakamatsu, J. Salomone, and D. Celdrán. 2013. Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes. Ecological Indicators 34:181-191. https://doi.org/10.1016/j.ecolind.2013.05.007.

Gao, X., A. R. Huete, and K. Didan. 2003. Multisensor Comparisons and Validation of MODIS Vegetation Indices at the Semiarid Jornada Experimental Range. IEEE Transactions Geoscience and Remote Sensing 41(10):2368-2381. https://doi.org/10.1109/TGRS.2003.813840.

Garreaud, R. D., and P. Aceituno. 2007. Atmospheric circulation over South America: mean features and variability. Pp. 45-66 in T. Veblen, K. Young and A. Orme (eds.). The Physical Geography of South America. Oxford University Press, Oxford.

González, M., and V. Barros. 1998. The relation between tropical convection in South América and the end of the dry period in subtropical Argentina. International Journal of Climatology 18:1669-1685. https://doi.org/10.1002/(SICI)1097-0088(199812)18:15%3C1669::AID-JOC340%3E3.0.CO;2-1.

IPCC. 2014. Climate Change 2013-The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK.

Liebmann, B., and J. A. Marengo. 2001. Interannual Variability of the Rainy Season and Rainfall in the Brazilian Amazon Basin. Journal of Climate 14:4308-4318. https://doi.org/10.1175/1520-0442(2001)014%3C4308:IVOTRS%3E2.0.CO;2.

Maccagno, P. 2004. Indicadores socioeconómicos de desertificación en la región de la puna. En Teledetección Aplicada a la Problemática ambiental Argentina. Centro de Investigación y Aplicación a la Teledetección de la FAUBA. Pp. 31-40. Editorial EFA.

Maggi, A., and M. Di Ferdinando. 2012. Efecto del fenómeno ENOS en la respuesta del NDVI de la estepa arbustiva de Parastrephia sp. de la laguna de Pozuelos usando imágenes MODIS. Congreso Argentino de Teledetección.

Maggi, A., S. M. Navone, and F. A. Kindgard. 2010. Monitoreo de los cambios en el comportamiento de algunas lagunas debido a la Oscilación Climática utilizando imágenes satelitales en la Puna Jujeña. Edición Especial de la Revista Selper 2:34-45.

Maggi, A., and K. Ponieman. 2018. Changes in vegetal cover, precipitations and land degradation in Puna region, Argentina. Modern Environmental Science and Engineering 4(7):638-643.

Mantua, N. J., and S. R. Hare. 2002. The Pacific decadal oscillation. Journal of Oceanography 58(1):35-44. https://doi.org/10.1023/A:1015820616384.

Matteucci, S. D., A. F. Rodríguez, and M. E. Silva. 2017. La vegetación de la Argentina. Universidad de Buenos Aires. Facultad de Arquitectura y Urbanismo. Grupo de Ecología del Paisaje y Medio Ambiente. Fronteras 15(6):4-29

Maturana, J., M. Bello, and M. Manley. 1997. Antecedentes históricos y descripción del fenómeno El Niño, Oscilación del Sur. Pp. 13-27 en S. Avaria, J. Carrasco, J. Rutllant and E. Yáñez (eds.). 2004. El Niño-La Niña 1997-2000. Sus Efectos en Chile. CONA, Chile, Valparaíso.

Minetti, J. L., and W. M. Vargas. 1997. Trends and jumps in the annual precipitation in South America, south of the 15o S. Atmósfera 11:205-221.

Minvielle, M., and R. D. Garreaud. 2011. Projecting Rainfall Changes over the South American Altiplano. Journal of Climate 9:4577-4583. https://doi.org/10.1175/JCLI-D-11-00051.1.

Morello, J., S. D. Matteucci, A. Rodríguez, and M. Silva. 2012. Ecorregiones y complejos ecosistémicos de argentina. Buenos Aires: Orientación Gráfica Editora.

Movia, C., and S. M. Navone. 1993. Imágenes Landsat TM: Una herramienta para evaluar el deterioro de los pastizales en la Puna Argentina. Investigación Agraria, Producción y Protección Vegetales (Argentina) 9:30-35.

Paruelo, J. M., and W. K. Lauenroth. 1998. Interannual variability of NDVI and its relationship to climate for North American shrublands and grassland. Journal of Biogeography 25:721-733. https://doi.org/10.1046/j.1365-2699.1998.2540721.x.

Paoli, H., A. R. Bianchi, C. E. Yáñez, J. N, Volante, D. R. Fernández, M. C. Mattalía, and Y. E. Noé. 2002. Recursos Hídricos de la Puna, valles y Bolsones áridos del Noroeste Argentino. Convenio INTA EEA Salta-CIED.

Philippon, N., E. Mougin, L. Jarlan, and P. L. Frison. 2005. Analysis of the linkages between rainfall and land surface conditions in the West African monsoon through CMAP, ERS-WSC, and NOAA-AVHRR data. Journal of Geophysical Research Atmospheres 110:D24115. https://doi.org/10.1029/2005JD006394.

Ponieman, K., A. Maggi, and P. Baldassini. 2018. Ecuaciones para la estimación de la cobertura vegetal en estepas de la puna a partir de IVN de MODIS. VIII Congreso Nacional de Manejo de Pastizales Naturales y el IV Congreso del Mercosur de Manejo de Pastizales Naturales.

Rivera, J. A., N. Herrera, C. N. Gulizia, N. B. Montroull, and P. Spennemann. 2009. Identificación del comienzo de la estación lluviosa en la región subtropical de Argentina. Actas de la XXIV Reunión Científica de la AAGG, 1: 61-67. Asociación Argentina de Geofísicos y Geodestas, Buenos Aires. ISBN 978-987-25291-1-6.

Rojo, V., Y. Arzamendia, C. Pérez, J. Baldo, and B. L. Vilá. 2019. Spatial and temporal variation of the vegetation of the semiarid Puna in a pastoral system in the Pozuelos Biosphere Reserve. Environmental Monitoring and Assessment 191(10):635. https://doi.org/10.1007/s10661-019-7803-7.

Ruthsatz, B., and C. P. Movia. 1975. Relevamiento de las estepas altoandinas del noreste de la provincia de Jujuy, República Argentina. Fundación Educación, Ciencia, Cultura. Buenos Aires.

Schmidt, H., and A. Karnieli. 2000. Remote sensing of the seasonal variability of vegetation in a semi-arid environment. Journal of Arid Environments 45(1):43-59. https://doi.org/10.1006/jare.1999.0607.

Seiler, C., R. W. Hutjes, and P. Kabat. 2013. Climate variability and trends in Bolivia. Journal of Applied Meteorology and Climatology 52(1):130-146. https://doi.org/10.1175/JAMC-D-12-0105.1.

Sellers, P. J., J. A. Berry, G. J. Collatz, C. B. Field, and F. G. Hall. 1992. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sensing of Environment 42(3):187-216. https://doi.org/10.1016/0034-4257(92)90102-P.

Tchilinguirian, P., and D. E. Olivera. 2012. Degradación y formación de vegas puneñas (900-150 años AP), Puna Austral (26 S) ¿Respuesta del paisaje al clima o al hombre. Acta Geológica 24:41-61.

Thibeault, J., A. Seth, and G. Wang. 2011. Mechanisms of summertime precipitation variability in the Bolivian Altiplano: present and future. International Journal of Climatology 32(13):2033-2041. https://doi.org/10.1002/joc.2424.

Thomas, E., D. Douterlungne, I. Vandebroek, F. Heens, P. Goetghebeur, and P. Van Damme. 2011. Human impact on wild firewood species in the Rural Andes community of Apillapampa, Bolivia. Environmental Monitoring and Assessment 178:333-347. https://doi.org/10.1007/s10661-010-1693-z.

Trauth, M. H., R. A. Alonso, K. R. Haselton, R. L. Hermanns, and M. R. Strecker. 2000. Climate change and mass movements in the NW Argentine Andes. Earth and Planetary Science Letters 179:243-256. https://doi.org/10.1016/S0012-821X(00)00127-8.

Tsonis, A., A. G. Hunt, and J. B. Elsner. 2003. On the relation between ENOS and global climate change. Meteorology and Atmospherics Physics 000:1-14.

UN (United Nations). 1994. United Nations Convention to Combat Desertification in Countries Experiencing Serious Drought and/or Desertification, Particularly in Africa. Document A/AC. 241/27, 12. 09. 1994 with Annexes, United Nations: New York, NY.

Vuille, M., and R. S. Bradley. 2000. Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys Res Lett 27:3885-3888. https://doi.org/10.1029/2000GL011871.

Vuille, M., R. S. Bradley, M. Werner, and F. Keimig. 2003. 20th Century Climate Change in the Tropical Andes: Observations and Model Results. In H. F. Díaz (ed.). Climate Variability and Change in High Elevation Regions: Past, Present y Future. Advances in Global Change Research. Vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1252-7_5.

Wiegand, T., H. A. Snyman, K. Kellner, and J. M. Paruelo. 2008. Do Grasslands Have a Memory: Modeling Phytomass Production of a Semiarid South African Grassland. Ecosystems 7:243-258. https://doi.org/10.1007/s10021-003-0235-8.

Worcel, L., and A. E. Maggi. 2016 Impacto del fenómeno ENOS en comunidades vegetales de la puna salteña. Puerto Iguazú XVII Simposio Internacional SELPER.

NDVI dynamics in different phases of the ENSO phenomenon in the Laguna Blanca Biosphere Reserve (Catamarca, Argentina)

Published

2020-04-02

How to Cite

Maggi, A. E., Ponieman, K. D., Castro, N. G., & Di Ferdinando, M. (2020). NDVI dynamics in different phases of the ENSO phenomenon in the Laguna Blanca Biosphere Reserve (Catamarca, Argentina). Ecología Austral, 30(1), 151–164. https://doi.org/10.25260/EA.20.30.1.0.1021