Fire incidence along an elevation gradient in the mountains of central Argentina

Authors

  • Juan P. Argañaraz Instituto de Altos Estudios Espaciales "Mario Gulich" (CONAE-UNC), CONICET. Falda del Cañete, Argentina.
  • Ana M. Cingolani Instituto Multidisciplinario de Biodiversidad Vegetal, CONICET-Universidad Nacional de Córdoba. Córdoba, Argentina.
  • Laura M. Bellis Instituto de Altos Estudios Espaciales "Mario Gulich" (CONAE-UNC), CONICET. Falda del Cañete, Argentina. Cátedra de Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba. Córdoba, Argentina.
  • Melisa Giorgis Instituto Multidisciplinario de Biodiversidad Vegetal, CONICET-Universidad Nacional de Córdoba. Córdoba, Argentina.

DOI:

https://doi.org/10.25260/EA.20.30.2.0.1054

Keywords:

fire-vegetation patterns, fire frequency, forest, grassland, landscape ecology, remote sensing, sierras de Córdoba, spatial analyses, treeline

Abstract

In mountain ecosystems, vegetation distribution along elevation has been traditionally interpreted in terms of the decreasing temperature from base to top, but wildfires may co-vary with the elevation gradient, also playing an important role. In the mountains of central Argentina (500-2800 m a. s. l.) wildfires are one of the main disturbances, which may have an important role in shaping vegetation dynamics along elevation. However, to date, no study described the fire pattern along the elevation gradient. We compared fire incidence among five elevation intervals using an 18-year spatially explicit fire database derived from remote sensing. For each interval, we discarded unburnable areas and calculated fire incidence per year as the percentage of burned area. Fire incidence showed a hump-shaped pattern along the elevation gradient. The highest fire incidence occurred at intermediate elevations, in the 1301-1700 m and 901-1300 m intervals, with averages of 3.2 and 2.7% of the area being burned annually, respectively. The lowest fire incidence occurred at the lowest interval (500-900 m), with 1.3% being burned annually on average. The greater fire incidence observed at intermediate elevations is consistent with a sharp increase in the cover of grasslands above 900 m a. s. l., with an associated reduction in forest occupation. Towards higher elevations, the lower fire incidence is consistent with the presence of topographic breaks, greater proportion of unburnable surfaces that work as firebreaks and moister conditions. The greater fire incidence observed at intermediate elevations may be limiting forest expansion in those areas. At higher elevations the low forest cover may be explained by a combination of fire and livestock pressure. Our study is the first to show how fire incidence varies along the complete elevation gradient, bringing an important tool to understand vegetation distribution and plan future conservation and restoration strategies

Author Biography

Juan P. Argañaraz, Instituto de Altos Estudios Espaciales "Mario Gulich" (CONAE-UNC), CONICET. Falda del Cañete, Argentina.

Investigador Asistente de CONICET

References

Acosta, A., S. Díaz, M. Menghi, and M. Cabido. 1992. Patrones comunitarios a diferentes escalas espaciales en pastizales de las Sierras de Córdoba, Argentina. Revista Chilena de Historia Natural 65:195-207.

Alinari, J. 2017. ¿Puede el fuego limitar la distribución altitudinal de las principales especies del bosque serrano de la provincia de Córdoba? PhD Thesis, Universidad Nacional de Córdoba, Córdoba, Argentina.

Alinari, J., A. M. Cingolani, A. R. von Muller, and M. Cabido. 2019. El tamaño de los individuos y el microambiente afectan el daño por fuego y la supervivencia en árboles del Chaco Serrano. Ecología Austral 29:272-284. https://doi.org/10.25260/EA.19.29.2.0.841.

Alinari, J., A. von Muller, and D. Renison. 2015. The contribution of fire damage to restricting high mountain Polylepis australis forests to ravines: Insights from an un-replicated comparison. Ecología Austral 25:11-18.

Archibald, S., C. E. R. Lehmann, C. M. Belcher, W. J. Bond, R. A. Bradstock, A.-L. Daniau, K. G. Dexter, E. J. Forrestel, M. Greve, T. He, S. I. Higgins, W. A. Hoffmann, B. B. Lamont, D. J. McGlinn, G. R. Moncrieff, C. P. Osborne, J. G. Pausas, O. Price, B. S. Ripley, B. M. Rogers, D. W. Schwilk, M. F. Simon, M. R. Turetsky, G. R. V. der Werf, and A. E. Zanne. 2018. Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters 13(3):1-19 [033003]. https://doi.org/10.1088/1748-9326/aa9ead.

Argañaraz, J. P., G. Gavier Pizarro, M. Zak, and L. M. Bellis. 2015a. Fire regime, climate, and vegetation in the Sierras de Córdoba, Argentina. Fire Ecology 11:55-73. https://doi.org/10.4996/fireecology.1101055.

Argañaraz, J. P., G. Gavier Pizarro, M. Zak, M. A. Landi, and L. M. Bellis. 2015b. Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina. Science of The Total Environment 520:1-12. https://doi.org/10.1016/j.scitotenv.2015.02.081.

Argañaraz, J. P., M. A. Landi, S. J. Bravo, G. I. Gavier-Pizarro, C. M. Scavuzzo, and L. M. Bellis. 2016. Estimation of live fuel moisture content from MODIS images for fire danger assessment in Southern Gran Chaco. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9:5339-5349. https://doi.org/10.1109/JSTARS.2016.2575366.

Argañaraz, J. P., M. A. Landi, C. M. Scavuzzo, and L. M. Bellis. 2018. Determining fuel moisture thresholds to assess wildfire hazard: a contribution to an operational early warning system. PLoS ONE 13(10):e0204889. https://doi.org/10.1371/journal.pone.0204889.

Argañaraz, J. P., V. C. Radeloff, A. Bar-Massada, G. I. Gavier-Pizarro, C. M. Scavuzzo, and L. M. Bellis. 2017. Assessing wildfire exposure in the Wildland-Urban Interface area of the mountains of central Argentina. Journal of Environmental Management 196:499-510. https://doi.org/10.1016/j.jenvman.2017.03.058.

Argibay, D. S., and D. Renison. 2018. Efecto del fuego y la ganadería en bosques de Polylepis australis (Rosaceae) a lo largo de un gradiente altitudinal en las montañas del centro de la Argentina. Bosque 39:145-150. https://doi.org/10.4067/S0717-92002018000100145.

Bastarrika, A., M. Alvarado, K. Artano, M. P. Martínez, A. Mesanza, L. Torre, R. Ramo, and E. Chuvieco. 2014. BAMS: A Tool for Supervised Burned Area Mapping Using Landsat Data. Remote Sensing 6:12360-12380. https://doi.org/10.3390/rs61212360.

Bastarrika, A., E. Chuvieco, and M. P. Martín. 2011. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sensing of Environment 115:1003-1012. https://doi.org/10.1016/j.rse.2010.12.005.

Blanco, C. C., S. Scheiter, E. Sosinski, A. Fidelis, M. Anand, and V. D. Pillar. 2014. Feedbacks between vegetation and disturbance processes promote long-term persistence of forest-grassland mosaics in south Brazil. Ecological Modelling 291:224-232. https://doi.org/10.1016/j.ecolmodel.2014.07.024.

Bowman, D. M., J. K. Balch, P. Artaxo, W. J. Bond, J. M. Carlson, M. A. Cochrane, C. M. D’Antonio, R. S. DeFries, J. C. Doyle, S. P. Harrison, and others. 2009. Fire in the Earth system. Science 324:481-484. https://doi.org/10.1126/science.1163886.

Brooks, M. L., and J. R. Matchett. 2006. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980-2004. Journal of Arid Environments 67:148-164. https://doi.org/10.1016/j.jaridenv.2006.09.027.

Cabido, M., and A. Acosta. 1988. Degradación en pastizales climácicos de las Sierras de Córdoba, Argentina. Zonación a partir del Pastizal de Deyeuxia hieronymi en Pampa de Achala. Documents Phytosociologiques 11:573-581.

Cabido, M., R. Breimer, and G. Vega. 1987. Plant communities and associated soil types in a high plateau of the Córdoba mountains, central Argentina. Mountain Research and Development 7(1):25-42. https://doi.org/10.2307/3673322.

Cabido, M., G. Funes, E. Pucheta, F. Vedramini, and S. Díaz. 1998. A chorological analysis of the mountains from central Argentina. Is all what we call Sierra Chaco really Chaco? Contribution to the study of the flora and vegetation of the Chaco: XII. Candollea 53:321-331.

Cabido, M., S. R. Zeballos, M. Zak, M. L. Carranza, M. A. Giorgis, J. J. Cantero, and A. T. R. Acosta. 2018. Native woody vegetation in central Argentina: Classification of Chaco and Espinal forests. Applied Vegetation Science 21:298-311. https://doi.org/10.1111/avsc.12369.

Capó, E. A., R. Aguilar, and D. Renison. 2016. Livestock reduces juvenile tree growth of alien invasive species with a minimal effect on natives: a field experiment using exclosures. Biological Invasions 18:2943-2950. https://doi.org/10.1007/s10530-016-1185-3.

Caprio, A. C., and T. W. Swetnam. 1995. Historic fire regimes along an elevational gradient on the west slope of the Sierra Nevada, California. United States Department of Agriculture Forest Service. General Technical Report INT 320:173-179.

Cingolani, A. M., D. Renison, P. A. Tecco, D. E. Gurvich, and M. Cabido. 2008. Predicting cover types in a mountain range with long evolutionary grazing history: a GIS approach. Journal of Biogeography 35:538-551. https://doi.org/10.1111/j.1365-2699.2007.01807.x.

Cingolani, A. M., D. Renison, M. R. Zak, and M. Cabido. 2004. Mapping vegetation in a heterogeneous mountain rangeland using landsat data: an alternative method to define and classify land-cover units. Remote Sensing of Environment 92:84-97. https://doi.org/10.1016/j.rse.2004.05.008.

Cingolani, A. M., M. V. Vaieretti, M. A. Giorgis, N. La Torre, J. I. Whitworth-Hulse, and D. Renison. 2013. Can livestock and fires convert the sub-tropical mountain rangelands of central Argentina into a rocky desert? The Rangeland Journal 35:285-297. https://doi.org/10.1071/RJ12095.

Cingolani, A. M., M. V. Vaieretti, M. A. Giorgis, M. Poca, P. A. Tecco, and D. E. Gurvich. 2014. Can livestock grazing maintain landscape diversity and stability in an ecosystem that evolved with wild herbivores? Perspectives in Plant Ecology, Evolution and Systematics 16:143-153. https://doi.org/10.1016/j.ppees.2014.04.002.

Colladon, L. 2018. Anuario pluviométrico 2012/13-2016/17, cuenca del Río San Antonio. Informe interno del CIRSA. Informe interno del CIRSA, Instituto Nacional del Agua.

Colladon, L., and I. Pazos. 2014. Anuario pluviométrico 1992/1993 - 2011/2012. Cuenca del Río San Antonio. Sistema del Río Suquía, provincia de Córdoba. Instituto Nacional del Agua, Buenos Aires, Argentina.

Coop, J. D., R. T. Massatti, and A. W. Schoettle. 2010. Subalpine vegetation pattern three decades after stand-replacing fire: effects of landscape context and topography on plant community composition, tree regeneration, and diversity. Journal of Vegetation Science 21:472-487. https://doi.org/10.1111/j.1654-1103.2009.01154.x.

Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada, and C. W. Robledo. 2017. InfoStat, versión 2017. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Fick, S. E., and R. J. Hijmans. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas: new climate surfaces for global land areas. International Journal of Climatology 37:4302-4315. https://doi.org/10.1002/joc.5086.

Foster, C. N., S. C. Banks, G. J. Cary, C. N. Johnson, D. B. Lindenmayer, and L. E. Valentine. 2020. Animals as agents in fire regimes. Trends in Ecology and Evolution 35:346-356. https://doi.org/10.1016/j.tree.2020.01.002.

Gavier, G. I., and E. H. Bucher. 2004. Deforestación de las Sierras Chicas de Córdoba (Argentina) en el período 1970-1997. Academia Nacional de Ciencias. Miscelánea 101:1-27.

Gavier-Pizarro, G. I., T. Kuemmerle, L. E. Hoyos, S. I. Stewart, C. D. Huebner, N. S. Keuler, and V. C. Radeloff. 2012. Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ satellite data and Support Vector Machines in Córdoba, Argentina. Remote Sensing of Environment 122:134-145. https://doi.org/10.1016/j.rse.2011.09.023.

Giorgis, M. A., A. M. Cingolani, and M. Cabido. 2013. El efecto del fuego y las características topográficas sobre la vegetación y las propiedades del suelo en la zona de transición entre bosques y pastizales de las sierras de Córdoba, Argentina. Boletín de la Sociedad Argentina de Botánica 48:493-513. https://doi.org/10.31055/1851.2372.v48.n3-4.7555.

Giorgis, M. A., A. M. Cingolani, D. E. Gurvich, P. A. Tecco, J. Chiapella, F. Chiarini, and M. Cabido. 2017. Changes in floristic composition and physiognomy are decoupled along elevation gradients in central Argentina. Applied Vegetation Science 20:558-571. https://doi.org/10.1111/avsc.12324.

Giorgis, M. A., A. M. Cingolani, P. A. Tecco, M. Cabido, M. Poca, and H. von Wehrden. 2016. Testing alien plant distribution and habitat invasibility in mountain ecosystems: growth form matters. Biological invasions 18:2017-2028. https://doi.org/10.1007/s10530-016-1148-8.

Giorgis, M. A., A. M. Cingolani, I. Teich, and M. Poca. 2020. Can livestock coexist with Polylepis australis forests in mountains of central Argentina? Setting thresholds for a land sharing landscape. Forest Ecology and Management 457:117728. https://doi.org/10.1016/j.foreco.2019.117728.

Giorgis, M. A., M. L. Lopez, D. Rivero, and A. M. Cingolani. 2015. Cambios climáticos en las sierras de Córdoba (Argentina) durante el holoceno. Aportes a las reconstrucciones climáticas a través del análisis de silicofitolitos del sitio arqueológico El Alto 3. Boletín de la Sociedad Argentina de Botánica 50:361-375. https://doi.org/10.31055/1851.2372.v50.n3.12526.

Giorgis, M. A., and P. A. Tecco. 2014. Árboles y arbustos invasores de la Provincia de Córdoba (Argentina): una contribución a la sistematización de bases de datos globales. Boletín de la Sociedad Argentina de Botánica 49:581-603. https://doi.org/10.31055/1851.2372.v49.n4.9991.

Giorgis, M. A., P. A. Tecco, A. M. Cingolani, D. Renison, P. Marcora, and V. Paiaro. 2011. Factors associated with woody alien species distribution in a newly invaded mountain system of central Argentina. Biological Invasions 13:1423-1434. https://doi.org/10.1007/s10530-010-9900-y.

Gurvich, D. E., L. Enrico, and A. M. Cingolani. 2005. Linking plant functional traits with post-fire sprouting vigour in woody species in central Argentina. Austral Ecology 30:789-796. https://doi.org/10.1111/j.1442-9993.2005.01522.x. https://doi.org/10.1111/j.1442-9993.2005.01529.x.

Haugo, R. D., S. A. Hall, E. M. Gray, P. Gonzalez, and J. D. Bakker. 2010. Influences of climate, fire, grazing, and logging on woody species composition along an elevation gradient in the eastern Cascades, Washington. Forest Ecology and Management 260:2204-2213. https://doi.org/10.1016/j.foreco.2010.09.021.

Hemp, A. 2005. Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Global Change Biology 11:1013-1023. https://doi.org/10.1111/j.1365-2486.2005.00968.x.

Herrero, M. L., R. C. Torres, and D. Renison. 2016. Do wildfires promote woody species invasion in a fire-adapted ecosystem? Post-fire resprouting of native and non-native woody plants in central Argentina. Environmental Management 57:308-317. https://doi.org/10.1007/s00267-015-0616-8.

Holdridge, L. R. 1947. Determination of world plant formations from simple climatic data. Science 105:367-368. https://doi.org/10.1126/science.105.2727.367.

Jaacks, G. 2019. Monitoreo de fuegos de vegetación en el Parque Nacional Quebrada del Condorito, Argentina. Informe de avance 2013-2018. Documento para el Expediente No 664 3.066/2013 de la Administración de Parques Nacionales (APN). Registro interno APN: 665 IF-2019-40838697-APN-PNQC#APNAC. Villa Carlos Paz, Córdoba, Argentina.

Jaureguiberry, P., G. Bertone, and S. Díaz. 2011. Device for the standard measurement of shoot flammability in the field. Austral Ecology 36:821-829. https://doi.org/10.1111/j.1442-9993.2010.02222.x.

Kasischke, E. S., D. Williams, and D. Barry. 2002. Analysis of the patterns of large fires in the boreal forest region of Alaska. International Journal of Wildland Fire 11:131-144. https://doi.org/10.1071/WF02023.

Kitzberger, T., E. Aráoz, J. H. Gowda, M. Mermoz, and J. M. Morales. 2012. Decreases in Fire Spread Probability with Forest Age Promotes Alternative Community States, Reduced Resilience to Climate Variability and Large Fire Regime Shifts. Ecosystems 15:97-112. https://doi.org/10.1007/s10021-011-9494-y.

Kitzberger, T., G. Perry, J. Paritsis, J. Gowda, A. Tepley, A. Holz, and T. Veblen. 2016. Fire-vegetation feedbacks and alternative states: common mechanisms of temperate forest vulnerability to fire in southern South America and New Zealand. New Zealand Journal of Botany 54:247-272. https://doi.org/10.1080/0028825X.2016.1151903.

Körner, C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems. Springer Science and Business Media. https://doi.org/10.1007/978-3-642-18970-8.

Kowaljow, E., M. S. Morales, J. I. Whitworth-Hulse, S. R. Zeballos, M. A. Giorgis, M. Rodríguez Catón, and D. E. Gurvich. 2019. A 55-year-old natural experiment gives evidence of the effects of changes in fire frequency on ecosystem properties in a seasonal subtropical dry forest. Land Degradation and Development 30:266-277. https://doi.org/10.1002/ldr.3219.

Kunst, C., and S. Bravo. 2003. Ecología y régimen de fuego en la región chaqueña Argentina. Pp. 109-118 in C. Kunst, S. Bravo and J. Panigatti (eds.). Fuego en los ecosistemas argentinos. Ediciones INTA, Buenos Aires, Argentina.

Kurtz, F. 1904. Flora de Córdoba. Pages 270-343 in M. E. Río and L. Achával (eds.). Geografía de la Provincia de Córdoba, vol. 1. Compañía Sudamericana de Billetes de Banco, Buenos Aires, Argentina.

Landi, M. A. 2018. Caracterización del régimen de incendios, su relación con el clima y su efecto en la resiliencia y estructura de la vegetación. PhD. Thesis, Universidad Nacional de Córdoba, Córdoba, Argentina.

Lanza, M. G., M. P. Chartier, and P. I. Marcora. 2018. Relación clima-crecimiento radial de Polylepis australis en un gradiente altitudinal en las Sierras Grandes de Córdoba, Argentina. Ecología Austral 28:278-290. https://doi.org/10.25260/EA.18.28.1.1.620.

Lipoma, M. L., D. E. Gurvich, C. Urcelay, and S. Díaz. 2016. Plant community resilience in the face of fire: experimental evidence from a semi-arid shrubland. Austral Ecology 41:501-511. https://doi.org/10.1111/aec.12336.

Littell, J. S., D. McKenzie, D. L. Peterson, and A. L. Westerling. 2009. Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003. Ecological Applications 19:1003-1021. https://doi.org/10.1890/07-1183.1.

Luti, R., M. A. Bertrán de Solís, M. F. Galera, N. Müller de Ferreira, M. Berzal, M. Nores, M. A. Herrera, and J. C. Barrera. 1979. Vegetación. Pp. 297-368 en Geografía física de la provincia de Córdoba. Boldt, Buenos Aires, Argentina.

Marcora, P. I., I. Hensen, D. Renison, P. Seltmann, and K. Wesche. 2008. The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation. Diversity and Distributions 14:630-636. https://doi.org/10.1111/j.1472-4642.2007.00455.x.

Marcora, P. I., D. Renison, A. I. Pais-Bosch, M. R. Cabido, and P. A. Tecco. 2013. The effect of altitude and grazing on seedling establishment of woody species in central Argentina. Forest Ecology and Management 291:300-307. https://doi.org/10.1016/j.foreco.2012.11.030.

Martínez, G. A., M. D. Arana, A. J. Oggero, and E. S. Natale. 2017. Biogeographical relationships and new regionalisation of high-altitude grasslands and woodlands of the central Pampean Ranges (Argentina), based on vascular plants and vertebrates. Australian Systematic Botany 29:473-488. https://doi.org/10.1071/SB16046.

McKenzie, D., C. Miller, and D. A. Falk. 2011. Toward a theory of landscape fire. Pp. 3-25 in D. McKenzie, C. Miller and D. A. Falk (eds.). The Landscape Ecology of Fire. Springer Science and Business Media. https://doi.org/10.1007/978-94-007-0301-8_1.

Mermoz, M., T. Kitzberger, and T. T. Veblen. 2005. Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology 86:2705-2715. https://doi.org/10.1890/04-1850.

Metlen, K. L., C. N. Skinner, D. R. Olson, C. Nichols, and D. Borgias. 2018. Regional and local controls on historical fire regimes of dry forests and woodlands in the Rogue River Basin, Oregon, USA. Forest Ecology and Management 430:43-58. https://doi.org/10.1016/j.foreco.2018.07.010.

Nogués-Bravo, D., M. B. Araújo, T. Romdal, and C. Rahbek. 2008. Scale effects and human impact on the elevational species richness gradients. Nature 453:216-220. https://doi.org/10.1038/nature06812.

Paritsis, J., T. T. Veblen, and A. Holz. 2015. Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire-prone shrublands in Patagonia. Journal of Vegetation Science 26:89-101. https://doi.org/10.1111/jvs.12225.

Pausas, J. G., and E. Ribeiro. 2013. The global fire-productivity relationship: Fire and productivity. Global Ecology and Biogeography 22:728-736. https://doi.org/10.1111/geb.12043.

Pausas, J. G., and E. Ribeiro. 2017. Fire and plant diversity at the global scale. Global Ecology and Biogeography 26:889-897. https://doi.org/10.1111/geb.12596.

Prado, D. E. 1993. What is the Gran Chaco vegetation in South America? I: A review. Contribution to the study of flora and vegetation of the Chaco. V. Candollea 48:145-172.

Renison, D., M. P. Chartier, M. Menghi, P. I. Marcora, R. C. Torres, M. Giorgis, I. Hensen, and A. M. Cingolani. 2015. Spatial variation in tree demography associated to domestic herbivores and topography: Insights from a seeding and planting experiment. Forest Ecology and Management 335:139-146. https://doi.org/10.1016/j.foreco.2014.09.036.

Renison, D., A. M. Cingolani, and R. Suárez. 2002. Efectos del fuego sobre un bosquecillo de Polylepis australis (Rosaceae) en las montañas de Córdoba, Argentina. Revista Chilena de Historia Natural 75:719-727. https://doi.org/10.4067/S0716-078X2002000400007.

Renison, D., I. Hensen, R. Suárez, and A. M. Cingolani. 2006. Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: human or environmental influence? Journal of Biogeography 33:876-887. https://doi.org/10.1111/j.1365-2699.2006.01455.x.

Rogeau, M.-P., and G. W. Armstrong. 2017. Quantifying the effect of elevation and aspect on fire return intervals in the Canadian Rocky Mountains. Forest Ecology and Management 384:248-261. https://doi.org/10.1016/j.foreco.2016.10.035.

Sparacino, J., D. Renison, A. M. Devegili, and R. Suárez. 2019. Wind protection rather than soil water availability contributes to the restriction of high-mountain forest to ravines. New Forests 51:101-117. https://doi.org/10.1007/s11056-019-09722-z.

Staver, A. C., S. Archibald, and S. A. Levin. 2011. The global extent and determinants of savanna and forest as alternative biome states. Science 334:230-232. https://doi.org/10.1126/science.1210465.

Syphard, A. D., T. J. Brennan, and J. E. Keeley. 2018. Drivers of chaparral type conversion to herbaceous vegetation in coastal Southern California. Diversity and Distributions 25:90-101. https://doi.org/10.1111/ddi.12827.

Syphard, A. D., V. C. Radeloff, J. E. Keeley, T. J. Hawbaker, M. K. Clayton, S. I. Stewart, and R. B. Hammer. 2007. Human influence on California fire regimes. Ecological Applications 17:1388-1402.

Syphard, A. D., V. C. Radeloff, N. S. Keuler, R. S. Taylor, T. J. Hawbaker, S. I. Stewart, and M. K. Clayton. 2008. Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire 17:602. https://doi.org/10.1071/WF07087.

Tachikawa, T., M. Hato, M. Kaku, and A. Iwasaki. 2011. Characteristics of ASTER GDEM version 2. Pp. 3657-3660 in Geoscience and remote sensing symposium (IGARSS), 2011 IEEE international. IEEE. https://doi.org/10.1109/IGARSS.2011.6050017.

Tálamo, A., and S. M. Caziani. 2003. Variation in woody vegetation among sites with different disturbance histories in the Argentine Chaco. Forest Ecology and Management 184:79-92. https://doi.org/10.1016/S0378-1127(03)00150-6.

Tecco, P. A., A. I. Pais-Bosch, G. Funes, P. I. Marcora, S. R. Zeballos, M. Cabido, and C. Urcelay. 2016. Mountain invasions on the way: are there climatic constraints for the expansion of alien woody species along an elevation gradient in Argentina? Journal of Plant Ecology 9:380-392. https://doi.org/10.1093/jpe/rtv064.

Teich, I., A. M. Cingolani, D. Renison, I. Hensen, and M. A. Giorgis. 2005. Do domestic herbivores retard Polylepis australis Bitt. woodland recovery in the mountains of Córdoba, Argentina? Forest Ecology and Management 219:229-241. https://doi.org/10.1016/j.foreco.2005.08.048.

Tepley, A. J., E. Thomann, T. T. Veblen, G. L. W. Perry, A. Holz, J. Paritsis, T. Kitzberger, and K. J. Anderson-Teixeira. 2018. Influences of fire-vegetation feedbacks and post-fire recovery rates on forest landscape vulnerability to altered fire regimes. Journal of Ecology 106:1925-1940. https://doi.org/10.1111/1365-2745.12950.

Tiribelli, F., T. Kitzberger, and J. M. Morales. 2018. Changes in vegetation structure and fuel characteristics along post-fire succession promote alternative stable states and positive fire-vegetation feedbacks. Journal of Vegetation Science 29:147-156. https://doi.org/10.1111/jvs.12620.

Torres, R. C., M. A. Giorgis, C. Trillo, L. Volkmann, P. Demaio, J. Heredia, and D. Renison. 2014. Post-fire recovery occurs overwhelmingly by resprouting in the Chaco Serrano forest of Central Argentina: Post-fire tree regeneration. Austral Ecology 39:346-354. https://doi.org/10.1111/aec.12084.

Torres, R. C., and D. Renison. 2015. Effects of vegetation and herbivores on regeneration of two tree species in a seasonally dry forest. Journal of Arid Environments 121:59-66. https://doi.org/10.1016/j.jaridenv.2015.05.002.

Torres, R. C., and D. Renison. 2016. Indirect facilitation becomes stronger with seedling age in a degraded seasonally dry forest. Acta Oecologica 70:138-143. https://doi.org/10.1016/j.actao.2015.12.006.

Vaieretti, M. V., A. M. Cingolani, N. Pérez Harguindeguy, and M. Cabido. 2013. Effects of differential grazing on decomposition rate and nitrogen availability in a productive mountain grassland. Plant and Soil 371:675-691. https://doi.org/10.1007/s11104-013-1831-9.

Vera, F. C. 2016. Crecimiento radial de Lithraea molleoides en relación con la altitud y con las características del micrositio en el Bosque Serrano de Córdoba. Tesis de Grado, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.

van der Werf, G. R., J. T. Randerson, L. Giglio, N. Gobron, and A. J. Dolman. 2008. Climate controls on the variability of fires in the tropics and subtropics: climate controls on fires. Global Biogeochemical Cycles 22. https://doi.org/10.1029/2007GB003122.

Whelan, R. J. 1995. The Ecology of Fire. Cambridge University Press.

Whittaker, R. H. 1956. Vegetation of the great smoky mountains. Ecological Monographs 26:1-80. https://doi.org/10.2307/1943577.

Zak, M. 2008. Patrones espaciales de la vegetación de la provincia de Córdoba. Análisis complementario de información satelital y datos de campo. PhD Thesis, Universidad Nacional de Córdoba, Argentina.

Fire incidence along an elevation gradient in the mountains of central Argentina

Downloads

Additional Files

Published

2020-07-09

How to Cite

Argañaraz, J. P., Cingolani, A. M., Bellis, L. M., & Giorgis, M. (2020). Fire incidence along an elevation gradient in the mountains of central Argentina. Ecología Austral, 30(2), 268–281. https://doi.org/10.25260/EA.20.30.2.0.1054