Phosphorus fertilization lowers richness and increases the number of exotic plant species in grasslands overseeded with legumes
DOI:
https://doi.org/10.25260/EA.20.30.3.0.1063Keywords:
natural grassland, species richness, ANPP, phosphorus fertilization, Lotus angustissimusAbstract
Uruguay sits in the Rio de la Plata Grasslands, one of the biggest grassland biomes in the world, with a pronounced biodiversity. Nowadays, intensification of land use has led to the degradation of this ecosystem. A common practice for enhancing productivity of natural grasslands in the region is the overseeding of an exotic legume, alongside phosphorus fertilization. The objective of this study is to measure the impact of a phosphorous fertilization gradient on total plant species richness, the presence of exotic species and the net primary productivity. With the data obtained, we explored possible mechanisms that explain the changes in diversity observed. Two experimental sites were used: PA (in the geomorphological region ‘Sierras del Este’), and GL (in the geomorphological region ‘Cuesta Basáltica’). Eight plots were established, with different amounts of phosphorus fertilization, with overseeding of Lotus angustissimus. A vegetation sampling of each treatment was done on the third year and a half after the establishment of the experiment. Total and exotic species richness was evaluated, alongside the effect of each treatment on the total and the L. angustissimus net primary productivity of the first three years of the experiment. We found that total species richness decreased with increasing amounts of phosphorus fertilization, while exotic species richness increased with increasing amounts of phosphorus fertilization. The total and the L. angustissimus net primary productivity increased with fertilization for PA, but didn’t for GL. This suggests that, in GL, mechanisms regarding the ‘niche dimension’ and the ‘total competition’ hypothesis are taking place. In PA, it isn’t possible to distinguish which mechanisms are the predominant ones behind the species loss observed. We conclude that more studies need to be done on this technology, in search of fertilization thresholds that allow for greater productivity without putting biodiversity in jeopardy.
References
Alpert, P., E. Bone, and C. Holzapfel. 2000. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspectives in Plant Ecology, Evolution and Systematics 3:52-66. https://doi.org/10.1078/1433-8319-00004.
Andrade, B. O., E. Marchesi, S. Burkart, R. Setubal, F. Lezama, S. Perelman, A. A. Schneider, R. Trevisan, G. E. Overbeck, and I. I. Boldrini. 2018. Vascular plant species richness and distribution in the Río de la Plata grasslands. Botanical Journal of the Linnean Society 188:250-256. https://doi.org/10.1093/botlinnean/boy063.
Ayala, W., M. Bemhaja, F. Condón, B. Cotro, M. J. Cuitiño, J. Docanto, J. García, F. Gutiérrez, F. Olmos, D. Real, M. Rebuffo, R. Reyno, C. Rossi, and J. Silva. 2017. Forrajeras. Catálogo de Cultivares 2017. Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay.
Baeza, S., G. Rama, and F. Lezama. 2019. Cartografía de los pastizales naturales en las regiones geomorfológicas de Uruguay predominantemente ganaderas. Ampliación y actualización. Pp. 27-47 en A. Altesor, L. López-Mársico and J. M. Paruelo (eds.). Bases ecológicas y tecnológicas para el manejo de pastizales II. Serie FPTA Nº 69, INIA, Montevideo, Montevideo, Uruguay.
Bray, J. R. 1963. Root production and the estimation of net productivity. Canadian Journal of Botany 41:65-72. https://doi.org/10.1139/b63-007.
Bresciano, D., C. Rodríguez, F. Lezama, and A. Altesor. 2014. Patrones de invasión de los pastizales de Uruguay a escala regional. Ecología Austral 24:83-93.
Bullock, J. M., R. F. Pywell, and K. J. Walker. 2007. Long-term enhancement of agricultural production by restoration of biodiversity. Journal of Applied Ecology 44:6-12. https://doi.org/10.1111/j.1365-2664.2006.01252.x.
Ceulemans, T., R. Merckx, M. Hens, and O. Honnay. 2011. A trait-based analysis of the role of phosphorus vs. nitrogen enrichment in plant species loss across North-west European grasslands. Journal of Applied Ecology 48:1155-1163. https://doi.org/10.1111/j.1365-2664.2011.02023.x.
Ceulemans, T., R. Merckx, M. Hens, and O. Honnay. 2013. Plant species loss from European semi-natural grasslands following nutrient enrichment - is it nitrogen or is it phosphorus? Global Ecology and Biogeography 22:73-82. https://doi.org/10.1111/j.1466-8238.2012.00771.x.
Davis, M. A., J. P. Grime, and K. Thompson. 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88:528-534. https://doi.org/10.1046/j.1365-2745.2000.00473.x.
DeMalach, N. 2018. Toward a mechanistic understanding of the effects of nitrogen and phosphorus additions on grassland diversity. Perspectives in Plant Ecology, Evolution and Systematics 32:65-72. https://doi.org/10.1016/j.ppees.2018.04.003.
Dengler, J., M. Chytry, and J. Ewald. 2008. Phytosociology. Pp. 2767-2779 in S. E. Jorgensen and B. D. Fath (eds.). Encyclopedia of Ecology. Elsevier, Oxford, UK. https://doi.org/10.1016/B978-008045405-4.00533-4.
DICOSE. 2017. Datos de la declaración jurada. Ministerio de Ganadería, Agricultura y Pesca, Montevideo, Montevideo, Uruguay.
Elton, C. S. 1958. The ecology of invasions by animals and plants. Methuen, London, UK. https://doi.org/10.1007/978-1-4899-7214-9.
Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J. Stohlgren, D. B. Tilman, and B. Von Holle. 2007. The invasion paradox: Reconciling pattern and process in species invasions. Ecology 88:3-17. https://doi.org/10.1890/0012-9658(2007)88[3:TIPRPA]2.0.CO;2.
Guido, A., E. Vélez-Martin, G. E. Overbeck, and V. D. Pillar. 2016. Landscape structure and climate affect plant invasion in subtropical grasslands. Applied Vegetation Science 19:600-610. https://doi.org/10.1111/avsc.12263.
Harpole, W. S., and D. Tilman. 2007. Grassland species loss resulting from reduced niche dimension. Nature 446:791-793.
Harpole, W. S., L. L. Sullivan, E. M. Lind, J. Firn, P. B. Adler, E. T. Borer, J. Chase, P. A. Fay, Y. Hautier, H. Hillebrand, A. S. MacDougall, E. W. Seabloom, R. Williams, J. D. Bakker, M. W. Cadotte, E. J. Chaneton, C. Chu, E. E. Cleland, C. D'Antonio, K. F. Davies, D. S. Gruner, N. Hagenah, K. Kirkman, J. M. Knops, K. J. La Pierre, R. L. McCulley, J. L. Moore, J. W. Morgan, S. M. Prober, A. C. Risch, M. Schuetz, C. J. Stevens, and P. D. Wragg. 2016. Addition of multiple limiting resources reduces grassland diversity. Nature 537:93-96. https://doi.org/10.1038/nature05684.
Huenneke, L. F., S. P. Hamburg, R. Koide, H. A. Mooney, and P. M. Vitousek. 1990. Effects of Soil Resources on Plant Invasion and Community Structure in Californian Serpentine Grassland. Ecology 71:478-491. https://doi.org/10.2307/1940302.
Jaurena, M., F. Lezama, L. Salvo, G. Cardozo, W. Ayala, J. Terra, and C. Nabinger. 2016. The Dilemma of Improving Native Grasslands by Overseeding Legumes: Production Intensification or Diversity Conservation. Rangeland Ecology and Management 69:35-42. https://doi.org/10.1016/j.rama.2015.10.006.
Lezama, F., A. Altesor, M. Pereira, and J. M. Paruelo. 2019. Grasslands of Uruguay: classification based on vegetation plots. Phytocoenologia 49(3):211-229. https://doi.org/10.1127/phyto/2019/0215.
Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman, and D. A. Wardle. 2001. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science 294:804-808. https://doi.org/10.1126/science.1064088.
Ministerio de Ganadería, Agricultura y Pesca. 2017. Anuario Estadístico Agropecuario 2017. Dirección de Estadística Agropecuaria, Montevideo, Montevideo, Uruguay.
Modernel, P., W. A. Rossing, M. Corbeels, S. Dogliotti, V. Picasso, and P. Tittonell. 2016. Land use change and ecosystem service provision in Pampas and Campos grasslands of southern South America. Environmental Research Letters 11. https://doi.org/10.1088/1748-9326/11/11/113002.
Ni, J. 2004. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecology 174:217-234. https://doi.org/10.1023/B:VEGE.0000049097.85960.10.
Panario, D. 1988. Geomorfología del Uruguay. Propuesta de un marco estructural y un esquema de evolución del modelado del relieve uruguayo. Departamento Publicaciones, Facultad de Humanidades y Ciencias, Universidad de la República, Montevideo, Uruguay.
Peterson, H. M., L. A. Baker, D. Bruening, J. L. Nieber, J. S. Ulrich, and B. N. Wilson. 2017. Agricultural Phosphorus Balance Calculator: A tool for watershed planning. Journal of Soil and Water Conservation 72:395-404. https://doi.org/10.2489/jswc.72.4.395.
Rajaniemi, T. K. 2002. Why Does Fertilization Reduce Plant Species Diversity? Testing Three Competition-Based Hypotheses. Journal of Ecology 90:316-324. https://doi.org/10.1046/j.1365-2745.2001.00662.x.
Richardson, D. M., P. Pyšek, M. Rejmánek, M. G. Barbour, F. D. Panetta, and C. J. West. 2000. Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions 6:93-107. https://doi.org/10.1046/j.1472-4642.2000.00083.x.
Richardson, D. M., and P. Pyšek. 2006. Plant invasions: merging the concepts of species invasiveness and community invasibility. Progress in Physical Geography 30:409-431. https://doi.org/10.1191/0309133306pp490pr.
Semmartin, M., M Oyarzabal, J. Loreti, and M. Oesterheld. 2007. Controls of primary productivity and nutrient cycling in a temperate grassland with year-round production. Austral Ecology 32:416-428. https://doi.org/10.1111/j.1442-9993.2007.01706.x.
Soons, M. B., M. M. Hefting, E. Dorland, L. P. Lamers, C. Versteeg, and R. Bobbink. 2016. Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus. Biological Conservation 212:390-397. https://doi.org/10.1016/j.biocon.2016.12.006.
Soriano, A., R. J. León, O. E. Sala, R. S. Lavado, V. A. Deregibus, M. A. Cahuépé, O. A. Scaglia, C. A. Velázquez, and J. H. Lemcoff. 1991. Rio De Plata Grasslands. Pp. 367-408 en R. T. Coupland (ed.). Ecosystems of the World: Natural Grasslands. Volume 8A. Elsevier, Amsterdam, The Netherlands.
t’Mannetje, L. 2000. Measuring biomass of grassland vegetation. Pp. 151-177 en L. t’Mannetje and R. Jones (eds.). Field and laboratory methods for grassland and animal production research. CABI Publishing, Wallingford, England. https://doi.org/10.1079/9780851993515.0151.
Vitousek, P. M., C. M. D’Antonio, L. L. Loope, and R. Westbrooks. 1996. Biological invasions as global environmental change. American Scientist 84:468-478.
Weigelt, A., W. W. Weisser, N. Buchmann, and M. Scherer-Lorenzen. 2009. Biodiversity for multifunctional grasslands: equal productivity in high-diversity low-input and low-diversity high-input systems. Biogeosciences 6:1695-1706. https://doi.org/10.5194/bg-6-1695-2009.
Yachi, S., and M. Loreau. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences 96:463-1468. https://doi.org/10.1073/pnas.96.4.1463.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Pedro G. Pañella, Gerónimo Cardozo, Robin Cuadro, Rafael Reyno, Felipe Lezama
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.