A geostatistical method in GIS to estimate the amount of seabird guano accumulated on islands and headlands of Perú

Authors

  • Ángela Sifuentes-García Unidad de Investigación de Ecosistemas Marinos. Grupo Aves Marinas. Universidad Científica del Sur. Lima, Perú
  • Carlos B. Zavalaga Unidad de Investigación de Ecosistemas Marinos. Grupo Aves Marinas. Universidad Científica del Sur. Lima, Perú
  • Sebastián Lozano-Sanllehi Unidad de Investigación de Ecosistemas Marinos. Grupo Aves Marinas. Universidad Científica del Sur. Lima, Perú

DOI:

https://doi.org/10.25260/EA.20.30.3.0.1108

Keywords:

fertilizer, Geographic Information System, guano harvesting, kriging interpolation, marine protected areas, Humboldt Current

Abstract

The ‘guano of the islands’ in Perú is the excrement of cormorants, boobies and pelicans (guano birds), accumulated in large deposits on islands and headlands. This guano is harvested and marketed by the governmental agency AGRORURAL to meet the demands of local organic agriculture. As part of its management and commercialization plans, AGRORURAL estimates the total quantity of guano built-up on the seabird colonies using a volumetric method. The objective of this research was to propose an alternative geostatistical method that uses the volumetric data collection as baseline but incorporates the slope of the terrain and makes estimations of the total amount and distribution of guano using an interpolation grid model in a Geographic Information System (GIS). The data of the slope of the terrain, depth of guano layer, guano density and proportion guano/rock of georeferenced sampling points (taken with a hand-held GPS) on the island/headland surface were used to interpolate the quantity of guano over the entire surface using a raster kriging model so that each cell contained an estimated quantity of guano. For this study, six guano bird colonies were visited between June 2014 and February 2018. Based on the geostatistical method, the total quantity of guano estimated varied between 10921 t on Isla Mazorca and 26142 t on Isla Guañape Sur. The GIS grid maps showed that the quantity of guano deposits was not uniformly distributed over the island/headland surface. When the guano total quantity estimates based on the geostatistical method were validated with the amount of guano harvested, the estimation error was less than 18%. This error may decrease with the use of a submetric GPS, ground-penetrating radars and augers. An accurate method of guano volume quantification is crucial for budget, logistic and marketing planning of the guano islands and headlands of Perú.

References

AGRORURAL. 2018. Plan Anual de Comercialización 2018 del Programa de Desarrollo Productivo Agrario Rural - AGRORURAL. Resolución Directoral Ejecutiva N° 124-2018-MINAGRI-DVDIAR-AGRO RURAL-DE. Ministerio de Agricultura y Riego, Lima, Perú. URL: tinyurl.com/y6k4enpc.

AGRORURAL. 2019a. Plan Anual de Comercialización de Guano de Isla para el Ejercicio Fiscal 2019 con eficacia anticipada al 2 de enero de 2019, propuesto por la Dirección de Abonos del Programa de Desarrollo Productivo Agrario Rural - AGRORURAL. Resolución Directoral Ejecutiva N° 222-2019-MINAGRI-DVDIAR-AGRO RURAL-DE. Ministerio de Agricultura y Riego, Lima, Perú. URL: tinyurl.com/y4qefops.

AGRORURAL. 2019b. Plan Anual de Extracción para el Ejercicio Fiscal 2019 propuesto por la Dirección de Abonos del Programa de Desarrollo Productivo Agrario Rural – AGRORURAL. Resolución Directoral Ejecutiva N° 099-2019-MINAGRI-DVDIAR-AGRO RURAL-DE. Ministerio de Agricultura y Riego, Lima, Perú. URL: tinyurl.com/y2wgwpaj.

Carrasco, L. D., and M. A. Meza. 2017. Impacto de la Extracción del Guano sobre las Poblaciones de Aves Guaneras en algunas Islas y Puntas Guaneras de la Costa Peruana. Tesis de pregrado. Universidad Nacional Agraria La Molina, Lima, Perú. Pp. 138. URL: tinyurl.com/y2a5j5la.

Chen, Ch., K. Hu, H. Li, A. Yun, and B. Li. 2015. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function. PLOS ONE 10(6):e0129038. https://doi.org/10.1371/journal.pone.0129038.

Coker, R. E. 1919. Habits and economic relations of the guano birds of Perú. Proceedings of the US National Museum 56(2298):449-511. https://doi.org/10.5479/si.00963801.56-2298.449.

Collins, M. E., J. A. Doolittle, and R. V. Rourke. 1989. Mapping Depth to Bedrock on a Glaciated Landscape with Ground-Penetrating Radar. Soil Sci Soc Am J 53:1806-1812. https://doi.org/10.2136/sssaj1989.03615995005300060032x.

Cushman, G. T. 2005. The Most Valuable Birds in the World: International Conservation Science and the Revival of Perú's Guano Industry, 1909-1965. Environmental History 10(3):477-509. https://doi.org/10.1093/envhis/10.3.477.

Cushman, G. T. 2013. Guano and the Opening of the Pacific World: A Global Ecological History. First edition. Cambridge University Press, New York, USA. https://doi.org/10.1017/CBO9781139047470.

Esri Inc. 2016. ArcGIS Desktop (version 10.5.0.6491) [Software]. Environmental Systems Research Institute, Redlands, California, USA.

García, M., M. Valverde, and J. Iannacone. 2016. Dinámica Poblacional de las Aves Guaneras en la Campaña de Recolección de Guano de la Isla Guañape Norte, Perú, 2007-2009 y 2014. The Biologist (Lima) 14(2):307-326.

Google LLC. 2019. Google Earth Pro (version 7.3.2.5776) [Software]. Google LLC, Mountain View, California, USA.

Hutchinson, G. E. 1950. The Biogeochemistry of Vertebrate Excretion. The American Museum of Natural History, New York, USA. https://doi.org/10.1097/00010694-195010000-00010.

Jahncke, J., and C. Rivas. 1998. Recuperación, erosión y retención de otolitos en bolos de Guanay: ¿son los bolos realmente buenos indicadores de la dieta? Boletín Instituto del Mar del Perú 17(1-2):35-45.

Largueche, F.-Z. B. 2006. Estimating Soil Contamination with Kriging Interpolation Method. American Journal of Applied Sciences 3(6):1894-1898. https://doi.org/10.3844/ajassp.2006.1894.1898.

Liu, T.-L., K.-W. Juang, and D.-Y Lee. 2006. Interpolating Soil Properties Using Kriging Combined with Categorical Information of Soil Maps. Soil Sci Soc Am J 70:1200-1209. https://doi.org/10.2136/sssaj2005.0126.

Lythe, M. B., D. G. Vaughan, and the BEDMAP Consortium. 2001. BEDMAP: A new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research 106(B6):11335-11351. https://doi.org/10.1029/2000JB900449.

Murphy, R. C. 1936. Oceanic birds of South America: a study of species of the related coasts and seas, including the American quadrant of Antarctica, based upon the Brewster-Sanford collection in the American Museum of Natural History. The Macmillan Company / The American Museum of Natural History, New York, USA. https://doi.org/10.5962/bhl.title.11916.

Nageswara Rao, K., Ch. Udaya Bhaskara Rao, and T. Venkateswara Rao. 2008. Estimation of sediment volume through Geophysical and GIS analyses - A case study of the red sand deposit along Visakhapatnam Coast. Journal of Indian Geophysical Union 12(1):23-30. https://doi.org/10.1007/s11852-009-0042-2.

Pälli, A., J. C. Kohler, E. Isaksson, J. C. Moore, J. F. Pinglot, V. A. Pohjola, and H. Samuelsson. 2002. Spatial and temporal variability of snow accumulation using ground-penetrating radar and ice cores on a Svalbard glacier. Journal of Glaciology 48(162):417-424. https://doi.org/10.3189/172756502781831205.

Piérola, N. 1854. Informes sobre la existencia de huano en las Islas de Chincha presentados por la Comisión nombrada por el Gobierno Peruano, con los planos levantados por la misma Comisión. El Heraldo, Lima, Perú.

SAS Institute. 2016. SAS: Statistical Analysis System (version 9.4) [Software]. SAS Institute, Cary, North Carolina, USA.

Schneider, D., and D. C. Duffy. 1988. Historical variation in guano production from the Peruvian and Benguela upwelling ecosystems. Climatic Change 13:309-316. https://doi.org/10.1007/BF00139812.

Simeoni, M. A., P. D. Galloway, A. J. O´Neil, and R. J. Gilkes. 2009. A procedure for mapping the depth to the texture contrast horizon of duplex soils in south-western Australia using ground penetrating radar, GPS and kriging. Australian Journal of Soil Research 47:613-621. https://doi.org/10.1071/SR08241.

Smith, M. J., J. Rose, and S. Booth. 2006. Geomorphological mapping of glacial landforms from remotely sensed data: An evaluation of the principal data sources and an assessment of their quality. Geomorphology 76(1-2):148-165. https://doi.org/10.1016/j.geomorph.2005.11.001.

Sucre, E. B., J. W. Tuttle, and T. R. Fox. 2011. The Use of Ground-Penetrating Radar to Accurately Estimate Soil Depth in Rocky Forest Soils. Forest Science 57(1):59-66.

Villacorta, F. 2003. Antonio Raimondi: Informes y polémicas sobre el guano y el salitre (Perú 1854-1877). Fondo Editorial Universidad Nacional Mayor de San Marcos, Lima, Perú.

Yao, X., B. Fu, Y. Lü, F. Sun, S. Wang, and M. Liu. 2013. Comparison of Four Spatial Interpolation Methods for Estimating Soil Moisture in a Complex Terrain Catchment. PLOS ONE 8(1):e54660. https://doi.org/10.1371/journal.pone.0054660.

Zhang, Q.-F., L. Wang, and F.-Q. Wu. 2008. GIS-Based Assessment of Soil Erosion at Nihe Gou Catchment. Agricultural Sciences in China 7(6):746-753. https://doi.org/10.1016/S1671-2927(08)60110-8.

A geostatistical method in GIS to estimate the amount of seabird guano accumulated on islands and headlands of Perú

Downloads

Published

2020-11-09

How to Cite

Sifuentes-García, Ángela, Zavalaga, C. B., & Lozano-Sanllehi, S. (2020). A geostatistical method in GIS to estimate the amount of seabird guano accumulated on islands and headlands of Perú. Ecología Austral, 30(3), 472–483. https://doi.org/10.25260/EA.20.30.3.0.1108