Effects of heavy metals, glyphosate and their binary combinations on the growth of green algae

Authors

  • Constanza Afione Di Cristofano Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental.
  • Ángela B. Juárez Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA).
  • Juan Moretton Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental.
  • Anahí Magdaleno Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental.

DOI:

https://doi.org/10.25260/EA.21.31.1.0.1146

Keywords:

copper, lead, zinc, toxicity

Abstract

Rivers and streams of rural areas of the Buenos Aires Province contain variable concentrations of heavy metals and glyphosate. In this study, the toxicity of the metals Cu, Pb and Zn, the herbicide glyphosate (active product and ATANOR® formulation) and their binary combinations, was assessed on two green algae species (the standard species Raphidocelis subcapitata and a native strain of Scenedesmus acutus isolated from Burgos Stream [Buenos Aires]). The bioassays were carried out applying a concentration range of 0.5 mg/L - 20 mg/L, in incubations lasting 7 days after which the algal density was estimated. To obtain the effective concentrations inhibiting 10, 20 and 50% of the growth (EC10, EC20 and EC50) of individual substances and their combinations, the percentage of growth inhibition (%I) was modeled as a function of each concentration by a nonlinear fit. According to the EC50 obtained for each species, the toxicity of Cu and Zn was higher in R. subcapitata (7.47±2.14 and 6.51±2.26 mg/L, respectively) than in S. acutus (10.90±3.75 and> 20 mg/L), while Pb and glyphosate active compound were not toxic for neither of the two strains. ATANOR® glyphosate was toxic only to R. subcapitata (EC50=12.00±3.10 mg/L). According to the EC10 and EC20 values of the individual substances and the binary combinations, S. acutus showed higher sensitivity than R. subcapitata. From the analysis of toxic units (TU), the combinations Cu+Zn, Cu+glyphosate ATANOR® and Zn+glyphosate ATANOR® showed antagonistic effects on R. subcapitata (according to the TU values obtained from EC20 and EC50), while the Cu+Pb and Cu+Zn combinations showed synergistic and antagonistic effects, respectively, on S. acutus (according to the TU values obtained from the EC20). These results highlight the importance of conducting bioassays of toxic substances using native algal strains which allow inferring potential effects in native communities and food webs.

References

Alloway, B. J. 1995. Heavy metals in soils. Blackie Academic and Professional, London. Pp. 235-274. https://doi.org/10.1007/978-94-011-1344-1.

Aparicio, V. C., E. De Gerónimo, D. Marino, J. Primost, P. Carriquiriborde, and J. L. Costa. 2013. Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 93(9):1866-1873. https://doi.org/10.1016/j.chemosphere.2013.06.041.

Archibald, P. A., and H. C. Bold. 1970. Phycological Studies. XI. The Genus Chlorococcum Meneghini. Univ. Texas Public., N7015, Austin, Texas. Pp. 86.

Beasley, A., S. E. Belanger, J. L. Brill, and R. R. Otter. 2015. Evaluation and comparison of the relationship between NOEC and EC10 or EC20 values in chronic Daphnia toxicity testing. Environ Toxicol Chem 34:2378-2384. https://doi.org/10.1002/etc.3086.

Blinova, I. 2004. Use of freshwater algae and duckweeds for phytotoxicity testing. Environ Toxicol 19(4):425-428. https://doi.org/10.1002/tox.20042.

Bollani, S., L. de Cabo, C. Chagas, J. Moretton, C. Weigandt, A. Fabrizio de Iorio, and A. Magdaleno. 2019. Genotoxicity of water samples from an area of the Pampean region (Argentina) impacted by agricultural and livestock activities. Environ Sci Pollut Res 26(27):27631-27639. https://doi.org/10.1007/s11356-018-3263-9.

Broderius, S. J., M. C. Kahl, G. E. Elonen, D. E. Hammermeister, and M. D. Hoglund. 2005. A comparison of the lethal and sublethal toxicity of organic chemical mixtures to the feathed minnow (Pimephales promelas). Environ Toxicol Chem 24(12):3117-27. https://doi.org/10.1897/05-094R.1.

Carusso, S., A. B. Juárez, J. Moretton, and A. Magdaleno. 2018. Effects of three veterinary antibiotics and their binary mixtures on two green alga species. Chemosphere 194:821-827. https://doi.org/10.1016/j.chemosphere.2017.12.047.

Domingos, R. F., A. Gelabert, S. Carreira, A. Cordeiro, Y. Sivry, and M. F. Benedetti. 2014. Metals in the Aquatic Environment—Interactions and Implications for the Speciation and Bioavailability: A Critical Overview. Aquat Geochem 21(2-4):1-27. https://doi.org/10.1007/s10498-014-9251-x.

Duke, S. O. 1988. Herbicides: chemistry, degradation and mode of action. Pp. 1-70 in P. C. Kearney and D. D. Kaufman (eds.). Marcel Dekker, USA.

Environmental Canada. 2007. Biological test method: growth inhibition test using a freshwater algae. EPS 1/RM/25, Second Ed. Pp. 53.

Fergusson, J. 1990. The heavy elements. Chemistry, environmental impact and health effects. Pergamon Press, Oxford. Pp 175-182.

Franklin, N. M., J. L. Stauber, R. P. Lim, P. Petocz. 2002. Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ Toxicol Chem 21(11):2412-2422. https://doi.org/10.1897/1551-5028(2002)021%3C2412:TOMMTA%3E2.0.CO;2. https://doi.org/10.1002/etc.5620211121.

Geis, W. S., K. L. Fleming, E. T. Korthals, G. Searle, L. Reynolds, and D. A. Karner. 2000. Modifications to the algal growth inhibition test for use as a regulatory assay. Environ Toxicol Chem 19(1):36-40. https://doi.org/10.1002/etc.5620190105.

Guéguen, C., R. Gilbin, M. Pardos, and J. Dominik. 2004. Water toxicity and metal contamination assessment of a polluted river: the Upper Vistula River (Poland). Appl Geochem 19:153-162. https://doi.org/10.1016/S0883-2927(03)00110-0.

González, D., A. B. Juárez, C. P. Krugn, M. Santos, and S. Vera. 2019. Freshwater periphyton response to technical-grade and two commercial formulations of glyphosate. Ecol Austral 29:20-27. https://doi.org/10.25260/EA.19.29.1.0.816.

González-Pleiter, M., S. Gonzalo, I. Rodea-Palomares, F. Leganés, R. Rosal, K. Boltes, E. Marco, and F. Fernández-Piñas. 2013. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. Wat Res 47:2050-2064. https://doi.org/10.1016/j.watres.2013.01.020.

ISO. 2009. Water quality - Freshwater Algal Growth Inhibition Test with Unicellular Green Algae, revision. International Standardization Organization, Brussels (ISO 8692).

Janssen, C. R., and D. G. Heijerick. 2003. Algal toxicity tests for environ- mental risk assessments of metals. Rev Environ Contam Toxicol 178:23-52. https://doi.org/10.1007/0-387-21728-2_2.

Jorgensen, S. E., B. H. Sørensen, and H. Mahler. 1997. Handbook of estimation methods in ecotoxicology and environmental chemistry (Vol. 2). CRC Press.

Kahru, A., A. Ivask, K. Kasemets, L. Pollumaa, I. Kurvet, M. François, and H. C. Dubourguier 2005. Biotest and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead, and cadmium. Environ Toxicol Chem 24(11):2973-2982. https://doi.org/10.1897/05-002R1.1.

Kalinowska, R., and B. Pawlik-Skowronska. 2010. Response of two terrestrial green microalgae (Chlorophyta, Trebouxiophyceae) isolated from Cu-rich and unpolluted soils to copper stress. Environ Pollut 158:2778-2785. https://doi.org/10.1016/j.envpol.2010.03.003.

Kim, R. Y., J. K. Yoon, T. S. Kim, J. E. Yang, G. Owens, and K. R. Kim. 2015. Bioavailability of heavy metals in soils: definitions and practical implementation - a critical review. Environ Geochem Health 37:1041-1061. https://doi.org/10.1007/s10653-015-9695-y.

Küpper, H., I. Setlik, M. Spiller, F. S. Küpper, and O. Prášil. 2002. Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol 38(3):429-441. https://doi.org/10.1046/j.1529-8817.2002.t01-1-01148.x. https://doi.org/10.1046/j.1529-8817.2002.01148.x.

Lamelas, C., J. P. Pinheiro, and V. I. Slaveykova. 2009. Effect of humic acid on Cd (II), Cu (II), and Pb (II) uptake by freshwater algae: kinetic and cell wall speciation considerations. Environ Sci Technol 43(3):730-735. https://doi.org/10.1021/es802557r.

Magdaleno, A., L. de Cabo, S. Arreghini, and C. Salinas. 2014. Assessment of heavy metal contamination and water quality in an urban river from Argentina. Braz J Aquat Sci Tech 18(1):113-120. https://doi.org/10.14210/bjast.v18n1.p113-120.

Magdaleno, A., M. Paz, J. Mantovano, L. de Cabo, S. Bollani, C. Chagas, L. Núñez, C. Tornello, and J. Moretton. 2018. Evaluación del impacto de las actividades rurales en la calidad del agua de la microcuenca del arroyo Burgos (San Pedro, Provincia de Buenos Aires). Rev Mus Argent Cienc Nat 20(2):239-250. https://doi.org/10.22179/REVMACN.20.588.

Nowell, L. H., J. E. Norman, P. W. Moran, J. D. Martin, and W. W. Stone. 2014. Pesticide Toxicity Index—A tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms. Sci Total Environ 476-477:144-157. https://doi.org/10.1016/j.scitotenv.2013.12.088.

Omar, H. H. 2002. Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effects on growth and metabolism. Int Biodeter Biodegr 50:95-100. https://doi.org/10.1016/S0964-8305(02)00048-3.

Pérez, G. L., A. Torremorell, P. Mugni, P. Rodríguez, M. S. Vera, M. Do Nascimento, L. Allende, J. Bustingorry, R. Escaray, M. Ferraro, I. Izaguirre, H. Pizarro, C. Bonetto, D. P. Morris, and H. Zagarese. 2007. Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study. Ecol Appl 17:2310-2322. https://doi.org/10.1890/07-0499.1.

Peruzzo, P. J., A. A. Porta, and A. E. Ronco. 2008. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ Pollut 156:61-66. https://doi.org/10.1016/j.envpol.2008.01.015.

Pignata, M. L., G. L. Gudiño, E. D. Wannaza, R. R. Plá, C. M. González, H. A. Carreras, and L. Orellana. 2002. Atmospheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor. Environ Pollut 120:59-68. https://doi.org/10.1016/S0269-7491(02)00128-8.

Piotrowska-Niczyporuk, A., A. Bajguz, E. Zambrzycka, and B. Godlewska- Zylkiewicz. 2012. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52-65. https://doi.org/10.1016/j.plaphy.2011.11.009.

Pizarro, H., M. S. Vera, A. Vinocur, G. Pérez, M. Ferraro, R. M. Helman, and M. dos Santos Afonso. 2015. Glyphosate input modifies microbial community structure in clear and turbid freshwater systems. Environ Sci Pollut Res 23(6):5143-5153. https://doi.org/10.1007/s11356-015-5748-0.

Romero, D., M. C. Ríos de Molina, and A. B. Juárez. 2011. Oxidative stress induced by a commercial glyphosate formulation in a tolerant strain of Chlorella kessleri. Ecotoxicol Environ Saf 74:741-747. https://doi.org/10.1016/j.ecoenv.2010.10.034.

Sabatini, S. E., A. B. Juárez, M. R. Eppis, L. Bianchi, C. M. Luquet, and M. C. Ríos de Molina. 2009. Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotox Environ Safe 72:1200-1206. https://doi.org/10.1016/j.ecoenv.2009.01.003.

Sarandón, S. J. 2013. Uso de agroquímicos en la Provincia de Buenos Aires. Relevamiento de la utilización de Agroquímicos en la Provincia de Buenos Aires - Mapa de Situación e incidencias sobre la salud. Informe de la Defensoría del Pueblo de la Provincia de Buenos Aires. Fac Cs Agrarias, UNLP. Pp. 246.

Starodub, M. E. and P. T. S. Wong. 1987. Short-term and long-term studies on individual and combined toxicities of copper, zinc and lead to Scenedesmus quadricauda. The Sci Total Environ 63:101-110. https://doi.org/10.1016/0048-9697(87)90039-8.

Suzuki, S., H. Yamaguchi, N. Nakajima, and M. Kawachi. 2018. Raphidocelis subcapitata (=Pseudokirchneriella subcapitata) provides an insight into genome evolution and environmental adaptations in the Sphaeropleales. Scientific Reports 8(1):1-13. https://doi.org/10.1038/s41598-018-26331-6.

USEPA. 2002. Selenastrum capricornutum growth test. In Short-term method for estimating the chronic toxicity of effluents and receiving water to freshwater organisms. USA.

Vera, M. S., L. Lagomarsino, M. Sylvester, G. L. Pérez, P. Rodríguez, H. Mugni, R. Sinistro, M. Ferraro, C. Bonetto, H. Zagarese, and H. Pizarro. 2010. New evidences of Roundup Max® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology 19:713-719. https://doi.org/10.1007/s10646-009-0446-7.

Efectos de metales pesados, glifosato y sus mezclas binarias sobre el crecimiento de algas verdes

Published

2021-03-02

How to Cite

Afione Di Cristofano, C., Juárez, Ángela B., Moretton, J., & Magdaleno, A. (2021). Effects of heavy metals, glyphosate and their binary combinations on the growth of green algae. Ecología Austral, 31(1), 053–064. https://doi.org/10.25260/EA.21.31.1.0.1146