Characterization of Amaranthus quitensis resistance to three families of herbicides

Authors

  • María V. Romagnoli Facultad de Ciencias Agrarias. Universidad Nacional de Rosario, Santa Fe, Argentina
  • Daniel Tuesca Facultad de Ciencias Agrarias. Universidad Nacional de Rosario, Santa Fe, Argentina
  • Hugo R. Permingeat Facultad de Ciencias Agrarias. Universidad Nacional de Rosario, Santa Fe, Argentina

DOI:

https://doi.org/10.25260/EA.13.23.2.0.1176

Keywords:

ALS, acetolactate synthase resistance, biodiversity, agroecosystems

Abstract

Amaranthus quitensis is an annual species from South America that reproduces by seed. In Argentina its distribution covers central and northern country and is a major weed of summer crops (soybean, corn and sunflower) Pampa area. In the central region (Province of Cordoba and Santa Fe) flaws in its control were detected, when using different herbicide families (imidazolinone, sulfonylurea and triazolopyrimidines). Therefore, the aim of this study was to characterize the resistance at the biochemical and molecular level of biotypes of A. quitensis from four localities along this region. Specifically we used different herbicides inhibitors Aceto-Lactate Synthase (ALS), an enzyme involved in the synthesis of a group of aminoacids, and compared them with a susceptible biotype. Specific objectives were to determine the geographical origin of the resistance to each of these three herbicides and to assess the effect of different doses on ALS activity in vitro. Results, based on the observed genetic variability and on the sequences of the als genes, indicated that the analyzed populations were originated independently and not from a common mutation event that later dispersed to the different sites. These results allowed for a deeper knowledge at the biochemical and molecular levels of the resistance mechanisms of five ecotypes of A. quitensis to different herbicides that have the ALS enzyme as a target.

References

BENVENUTI, S. 2007. Weed seed movement and dispersal strategies in the agricultural environment. Weed Biology and Management, 7:141-157.

BERNASCONI, P; AR WOODWORTH; BA ROSEN; MV SUBRAMANIAN & DL SIEHL. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem., 270:17381-17385.

BURKART, A. 1978. Flora ilustrada de Entre Ríos. Tomo VI, Parte 3. Editado por INTA. Pp. 160-173.

CRISTOFFOLETI, PJ; D MEDEIROS; PA MONQUEIRO & T PASSINI. 2000. Planta Daninha á Cultura da Soja: Controle Químico e Resisténcia a Herbicidas. Soja: tecnología da produçao/ editado por Gil Miguel de Sousa Cámara. Piracicaba: ESALQ/pp. 179-202.

DUKE, SO; AL CHRISTY; FD HESS & ZS HOLT. 1991. Herbicide Resistance Crops. Comments from CAST 1991-1. Council of Agricultural Science and Tecnology, Ames IA.

HAWKES, TR. 1989. Studies of herbicides which inhibit branched chain amino acid biosynthesis. En: Copping, LG; J Dalziel; Dodge AD (eds.). Prospects for Amino Acid Biosynthesis Inhibitors in Crop Protection and Pharmaceutical Chemistry. BCPC Monograph 42:131-138.

HEAP, IM. The International Survey of Herbicide Resistant Weeds. Online. Internet. 2012. Disponible en www.weedscience.com.

KISSMANN, KG. Resistencia de plantas deninhas a herbicidas. Disponible en: www.hrac-br.com.br/arquivos/texto_herbicidas.doc.01/05/2003a.

LI, M; Q YU; H HAN; M VILA-AIUB; SB POWLES. 2012. ALS herbicide resistancemutations in Raphanus raphanistrum: evaluation of pleiotropic effects on vegetative growth and ALS activity. (wileyonlinelibrary.com) DOI 10.1002/pp. 3419.

LIPP, M; P BRODMANN; K PIETSCH; J PAUWELS & E ANKLAM. 1999. IUPAC collaborative trial study of a method to detect genetically modified soybeans and maize in dried powder. J. AOAC Int., 82: 923-928.

MAERTENS, KD; CL SPRAGUE; PJ TRANEL & RA HINES. 2004. Amaranthus hybridus populations resistant to triazine and acetolactate synthase-inhibiting herbicides. Weed Res., 44:21-26.

MALLORY SMITH, CA; DC THILL & MJ DIAL. 1990. Identification of sulfonylureas herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technology, 4:163-168.

MATIELLO, RR; JP RONZELLI & C PURÍSSIMO. 1999. Mecanismos de resistencia: fatores biológicos, agronómicos e genéticos. Anais/2. Curso de manejoda resistencia de plantas daninhas aos herbicidas. Ponta Grossa, PR: AEACG. Pp. 27-40.

MAXWELL, MD & M MORTIMER. 1994. Selection for herbicide resistance. Pp 1-25 en: Powles, SB & JAM Holtum. Herbicide Resistance in Plants: Biology and Bioquemistry. (eds.). CRC press, Boca Ratón.

MCNAUGHTON, KE; J LETART & EA LEE. 2005. Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus) and Powell amaranth (Amaranthus powellii). Weed Sci., 53:17-22.

MILLIMAN, LD; DE RIECHERS; FW SIMMONS & LM WAX. 2000. Two biotypes of eastern black nightshade that are resistant to ALS inhibiting herbicides. Proc. N. Cent. Weed Sci. Soc., 55:86.

POSTON, HP; CM HIRATA & HP WILSON. 2002. Response of acetolactate synthase from imidazolinone-susceptible and resistant smooth pigweed to ALS inhibitors. Weed Science, 50:306-311.

SCHLOSS, JV; LM CISKANIK & DE VAN DYK. 1988. Hawkes Origin of the herbicide binding site of the acetolactate synthase. Nature, 331:360-362.

SCHMITZER, PR; RJ EILER & C CSÉKE. 1993. Lack of cross- resistance of imazaquinresistant Xanthium strumarium acetolactate synthase to flumetsulam and chlorimuron. Plant Physiol., 103:281-283.

SHANER, DL. 1991. Physiological effects of the imidazolinone herbicides. En: Shaner, DL & SL O ́Connor (eds.). The imidazolinone herbicides Ann. Arbor. Lewi. Pp. 129-138.

SIBONY, M; A MICHEL H; U HAAS; B RUBIN & K HURLE. 2001. Sulfometuron-resistant Amaranthus retroflexus: cross-resistance and molecular basis for resistance to acetolactate syntase-inhibing herbicides. Black well Science Ltd. Weed Research, 41:491-508.

SUBRAMANIAN, MV & BC GERWICK. 1989. Inhibition of acetolactate synthase by triazolopyrimidines: a review of recent develop- ments. Pp. 277-288 20 en: Whitaker, JR & PE Sonnet (eds.). Biocatalysis in Agri- cultural Biotechnology. ACS Symposium Series No. 389. American Chemical Society, Washington, DC.

TRANEL, PJ & TR WRIGHT. 2002. Review: Resistance of weeds to ALS-inhibing herbicides: what heve we leRNAed? Weed Science, 50:700-712.

TRUCCO, F; AG HAGER & P TRANEL. 2006. Acetolactate syntase mutation conferring imidazolinone-specific herbicide resistance in Amaranthus hybridus. Journal of Plant Physiology, 163:475-479

TUESCA, D & L NISENSOHN. 2001. Resistencia de Amaranthus quitensis a imazetapir y clorimurón-etil. Pesq. Agrop. Bras., 36:601-606.

WESTERFELD, WW. 1945. A colorimetric determination of blood acetoin. J. Biol. Chem., 161:495-502.

WILLIAMS, JKG; AR KUBELIK; KJ LIVAK; JA RAFALSKY & SV TYNGER. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531-6535

YU, Q; H HAN; M VILA-AIUB & SB POWLES. 2010. AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. Journal of Experimental Botany, 61:3925-3934.

Published

2013-08-01

How to Cite

Romagnoli, M. V., Tuesca, D., & Permingeat, H. R. (2013). Characterization of Amaranthus quitensis resistance to three families of herbicides. Ecología Austral, 23(2), 119–125. https://doi.org/10.25260/EA.13.23.2.0.1176