Spatial and temporal dynamics of the trophic state in a tropical high Andean lake in northern Perú

Authors

  • Jesús Rascón Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva. Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas. Chachapoyas, Perú. https://orcid.org/0000-0002-9305-7203
  • Fernando Corroto Departamento de Biología. Universidad Autónoma de Madrid. Madrid, España. https://orcid.org/0000-0002-7125-5479
  • Damaris Leiva Tafur Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva. Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas. Chachapoyas, Perú. https://orcid.org/0000-0001-7575-8498
  • Oscar A. Gamarra Torres Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva. Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas. Chachapoyas, Perú.

DOI:

https://doi.org/10.25260/EA.21.31.2.0.1200

Keywords:

Eutrophication, Chlorophyll a, Trophic index, Trophic category, Andes

Abstract

Lake Pomacochas is located in the montane forest region of northern Perú, in an area of great agricultural and fish farming importance, activities that represent the basis of the local economy. The population settled on its margins discharges part of its wastewater into the lake without treatment. The main aim of this study was to determine the spatio-temporal dynamics of this lentic ecosystem, evaluating the limnological and trophic conditions during the dry and rainy periods, and their relationship with each other. The following limnological variables were analyzed at 15 sampling sites: transparency, chlorophyll ‘a’, temperature, pH, conductivity, oxygen saturation, turbidity, nitrates, nitrites, ammonium and soluble reactive phosphorus. Besides, the following trophic indices were calculated: Carlson’s trophic status index (TSIC), trophic status index modified by Aizaki et al. (TSIA), trophic status index modified by Toledo et al. (TSIT) and trophic status index by Vollenweider et al. (TRIX). The lake showed temporal, but not spatial, variation for both limnological variables and trophic indices. The dynamics of the limnological variables in the different climatic periods was also analyzed. The TSIC and TSIA indexes indicated that the lake can be characterized as α-mesotrophic to β-eutrophic, and according to TSIT index as α-mesotrophic to α-eutrophic. The TRIX showed the system has a poor water quality, highly productive, and a very high trophic level. The results reveal that the TSIA best described the trophic state of the lake, while the TSIC was the worst. All these results were statistically significant (P<0.05). The trophic indices evidenced that lake Pomacochas shows a strong tendency to the eutrophication due to agricultural activities. The study also showed that the system is conditioned by climatic seasonality.

References

Aizaki, M., A. Otsuki, T. Fukushima, T. Kawai, M. Hosomi, and K. Muraoka. 1981. Application of Modified Carlson’s Trophic State Index to Japanese lakes and its relationships to other parameters related to trophic state. Research Report from the Nacional Institute for Enviromental Studies 23:13-31.

Aizaki, M., A. Terashima, H. Nakahara, T. Nishio, and Y. Ishida. 1987. Trophic status of Tilitso, a high altitude Himalayan lake. Hydrobiologia 153:217-24. https://doi.org/10.1007/BF00007208.

Anderson, N. J., H. Bennion, and A. F. Lotter. 2014. Lake eutrophication and its implications for organic carbon sequestration in Europe. Global Change Biology 20:2741-51. https://doi.org/10.1111/gcb.12584.

APHA, AWWA and WEF. 2017. Standard Methods for the Examination of Water and Wastewater. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA.

Aranguren-Riaño, N. J., J. B. Shurin, A. Pedroza-Ramos, C. L. Muñoz-López, R. López, and O. Cely. 2018. Sources of nutrients behind recent eutrophication of Lago de Tota, a high mountain Andean lake. Aquatic Sciences 80:39. https://doi.org/10.1007/s00027-018-0588-x.

Archundia, D., C. Duwig, L. Spadini, G. Uzu, S. Guédron, M. C. Morel, R. Cortez, O. Ramos Ramos, J. Chincheros, and J. M. F. Martins. 2017. How uncontrolled urban expansion increases the contamination of the Titicaca lake basin (El Alto, La Paz, Bolivia). Water, Air, and Soil Pollution 228:1-17. https://doi.org/10.1007/s11270-016-3217-0.

Barboza-Castillo, E., J. L. Maicelo, C. Vigo-Mestanza, J. Castro-Silupú, and M. Oliva. 2014. Análisis morfométrico y batimétrico del lago Pomacochas (Perú). INDES Revista de Investigación para el Desarrollo Sustentable 2:90-97.

Carlson, R. E. 1977. A trophic state index for lakes. Limnology and Oceanography 22:361-69. https://doi.org/10.4319/lo.1977.22.2.0361.

Carlson, R. E. 1980. More complications in the Chlorophyll-Secchi Disk relationship. Limnology and Oceanography 25:379-82. https://doi.org/10.4319/lo.1980.25.2.0379.

Casallas, J. E., and G. Gunkel. 2001. Algunos aspectos limnológicos de un lago altoandino: El lago San Pablo, Ecuador. Limnetica 20:215-232.

Chanamé-Zapata, F., M. Custodio, C. Poma-Chávez, and A. Huamán-De la Cruz. 2020. Nutrient concentrations and trophic state of three Andean lakes from Junín, Perú. Ambiente and Agua 15:e2525. https://doi.org/10.4136/ambi-agua.2525.

Chaves, F. I. B., P. De F. Lima, R. C. Leitão, W. D. Paulino, and S. T. Santaella. 2013. Influence of rainfall on the trophic status of a Brazilian semiarid reservoir. Acta Scientiarum - Biological Sciences 35:505-11. https://doi.org/10.4025/actascibiolsci.v35i4.18261.

Chávez-Ortiz, J., D. Leiva-Tafur, J. Rascón, I. Hoyos, and F. Corroto. 2014. Estado trófico del lago Pomacochas a través de parámetros fisicoquímicos y bacteriológicos. INDES Revista de Investigación para el Desarrollo Sustentable 2:70-78.

Chen, F., T. Shu, E. Jeppesen, Z. Liu, and Y. Chen. 2013. Restoration of a subtropical eutrophic shallow lake in China: Effects on nutrient concentrations and biological communities. Hydrobiologia 718:59-71. https://doi.org/10.1007/s10750-013-1603-9.

Contreras-Espinosa, F., O. Castañeda-López, and A. García-Nagaya. 1994. La clorofila a como base para un índice trófico en lagunas costeras Mexicanas. Anales del Instituto de Ciencias del Mar y Limnología - UNAM 21:55-56.

Cony, N. L., N. C. Ferrer, and E. J. Cáceres. 2014. Evolución del estado trófico y estructura del fitoplancton de un lago somero de la Región Pampeana: Laguna Sauce Grande (Pcia. de Buenos Aires, Argentina). Biología Acuática 30:79-91.

Crossetti, L. O., and C. E. M. Bicudo. 2005. Structural and functional phytoplankton responses to nutrient impoverishment in mesocosms placed in a shallow eutrophic reservoir (Garcas Pond), Sao Paulo, Brazil. Hydrobiologia 541:71-85. https://doi.org/10.1007/s10750-004-4668-7.

Dodds, W. K., and M. R. Whiles. 2010. Freshwater Ecology. Academic Press Elsevier, San Diego, California, USA. https://doi.org/10.1016/B978-0-12-374724-2.00024-6.

El Zokm, G. M., H. R. Z. Tadros, M. A. Okbah, and G. H. Ibrahim. 2018. Eutrophication assessment using TRIX and Carlson’s indices in Lake Mariout Water, Egypt. Egyptian Journal of Aquatic Biology and Fisheries 22:321-39. https://doi.org/10.21608/ejabf.2018.23918.

Eugercios-Silva, A. R., M. Álvarez-Cobelas, and E. Monter- González. 2017. Impactos del nitrógeno agrícola en los ecosistemas acuáticos. Ecosistemas 26:37-44. https://doi.org/10.7818/ECOS.2017.26-1.06.

Filstrup, C. T., and J. A. Downing. 2017. Relationship of Chlorophyll to Phosphorus and Nitrogen in Nutrient-Rich Lakes. Inland Waters 6:155-64. https://doi.org/10.1080/20442041.2017.1375176.

Fernández, C., E. R. Parodi, and E. J. Cáceres. 2012. Phytoplankton structure and diversity in the eutrophic-hypereutrophic reservoir Paso de las Piedras, Argentina. Limnology 13:13-25. https://doi.org/10.1007/s10201-011-0347-3.

Ganguly, D., S. Patra, P. R. Muduli, K. V. Vardhan, K. R. Abhilash, R. S. Robin, and B. R. Subramanian. 2015. Influence of Nutrient Input on the Trophic State. Journal of Earth System Science 124:1005-17. https://doi.org/10.1007/s12040-015-0582-9.

Gao, Y., J. M. O’Neil, D. K. Stoecker, and J. C. Cornwell. 2014. Photosynthesis and nitrogen fixation during cyanobacteria blooms in an oligohaline and Tidal freshwater estuary. Aquatic Microbial Ecology 72:127-42. https://doi.org/10.3354/ame01692.

Giovanardi, F., and R. A. Vollenweider. 2004. Trophic Conditions of Marine Coastal Waters: Experience in Applying the Trophic Index TRIX to Two Areas of the Adriatic and Tyrrhenian Seas. Journal of Limnology 63:199-218. https://doi.org/10.4081/jlimnol.2004.199.

Gómez, R., C. Tovilla, E. Barba, O. Castañeda, F. J. Valle, E. I. Romero, and E. Ramos. 2014. Índices tróficos de importancia ecológica y su relación con algunas variables fisico-químicas en el sistema lagunar. Revista Cubana de Investigaciones Pesqueras 31:47-57.

Gunkel, G. 2003. Limnología de un lago tropical de alta montaña, en Ecuador: Características de los sedimentos y tasa de sedimentación. Revista de Biología Tropical 51:381-90.

Harding, L. W., J. E. Adolf, M. E. Mallonee, W. D. Miller, C. L. Gallegos, E. S. Perry, J. M. Johnson, K. G. Sellner, and H. W. Paerl. 2015. Effects on phytoplankton floral composition in Chesapeake Bay. Estuarine, Coastal and Shelf Science 162:53-68. https://doi.org/10.1016/j.ecss.2014.12.030.

Hoang, T. H. T., A. D. Van, and H. T. T. Nguyen. 2017. Driving Variables for Eutrophication in Lakes of Hanoi by Data-Driven Technique. Water and Environment Journal 31:176-83. https://doi.org/10.1111/wej.12231.

INEI. 2018. Resultados definitivos de los censos nacionales 20117: Amazonas. Instituto Nacional de Estadística e Informática, Lima, Lima, Perú.

Jeffrey, S. W., and G. F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167:191-94. https://doi.org/10.1016/S0015-3796(17)30778-3.

Kozak, A., A. Budzyńska, R. Dondajewska-Pielka, K. Kowalczewska-Madura, and R. Gołdyn. 2020. Functional groups of phytoplankton and their relationship with environmental factors in the restored Uzarzewskie Lake. Water (Switzerland) 12:1-14. https://doi.org/10.3390/w12020313.

Lagomarsino, L., N. Diovisalvi, J. Bustingorry, R. Escaray, and H. E. Zagarese. 2014. Diel Patterns of Total Suspended Solids, Turbidity, and Water Transparency in a Highly Turbid, Shallow Lake (Laguna Chascomús, Argentina). Hydrobiologia 752:21-31. https://doi.org/10.1007/s10750-014-2013-3.

López-Martínez, M. L., G. A. Jurado-Rosero, I. D. Páez- Montero, and S. M. Madroñero-Palacios. 2017. Estructura térmica del lago Guamués, un lago tropical de alta montaña. Luna Azul 44:94-119. https://doi.org/10.17151/luaz.2017.44.7.

López-Martínez, M. L., and S. M. Madroñero-Palacios. 2015. Estado trófico de un lago tropical de alta montaña: Caso laguna de La Cocha. Ciencias e Ingeniería Neogranadina 25:21-42. https://doi.org/10.18359/rcin.1430.

Michelutti, N., J. L. Lemmen, C. A. Cooke, W. O. Hobbs, A. P. Wolfe, J. Kurek, and J. P. Smol. 2016. Assessing the effects of climate and volcanism on diatom and chironomid assemblages in an Andean lake near Quito, Ecuador. Journal of Limnology 75:275-286. https://doi.org/10.4081/jlimnol.2015.1323

MAGRAMA. 2013a. Protocolo de muestreo de fitoplancton en lagos y embalses. M-LE-FP-2013. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, Madrid, España.

MAGRAMA. 2013b. Protocolo de análisis y cálculo de métricas de fitoplancton en lagos y embalses. MFIT-2013. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, Madrid, España.

MINAGRI. 2013. Capitalizando los saberes locales. Ministerio de Agricultura y Riego, Lima, Lima, Perú.

Naeher, S., R. H. Smittenberg, A. Gilli, E. P. Kirilova, A. F. Lotter, and C. J. Schubert. 2012. Impact of recent lake eutrophication on microbial community changes as revealed by high resolution lipid biomarkers in Rotsee (Switzerland). Organic Geochemistry 49:86-95. https://doi.org/10.1016/j.orggeochem.2012.05.014.

Ni, M., J. L. Yuan, M. L., and Z. M. Gu. 2018. Assessment of water quality and phytoplankton community of Limpenaeus vannamei pond in intertidal zone of Hangzhou Bay, China. Aquaculture Reports 11:53-58. https://doi.org/10.1016/j.aqrep.2018.06.002.

O’Neill, S. W., and A. P. Davis. 2012. Water treatment residual as a bioretention amendment for phosphorus. II: Long-term column studies. Journal of Environmental Engineering 138:328-36. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000436.

Oliva, M., C. Oliva, D. Rojas, M. Oliva, and A. Morales. 2015a. Identificación botánica de especies nativas de pastos más importantes de las cuencas lecheras de Molinopampa, Pomacochas y Leymebamba, Amazonas, Perú. Scientia Agropecuaria 6:125-29. https://doi.org/10.17268/sci.agropecu.2015.02.05.

Oliva, M., D. Rojas, A. Morales, C. Oliva, and M. A. Oliva. 2015b. Contenido nutricional, digestibilidad y rendimiento de biomasa de pastos nativos que predominan en las cuencas ganaderas de Molinopampa, Pomacochas y Leymebamba, Amazonas, Perú. Scientia Agropecuaria 6:211-15. https://doi.org/10.17268/sci.agropecu.2015.03.07.

Pérez, A., W. Machado, D. Gutiérrez, A. C. Borges, S. R. Patchineelam, and C. J. Sanders. 2018. Carbon accumulation and storage capacity in mangrove sediments three decades after deforestation within a eutrophic Bay. Marine Pollution Bulletin 126:275-80. https://doi.org/10.1016/j.marpolbul.2017.11.018.

Primpas, J., and M. Karydis. 2011. Scaling the Trophic Index (TRIX) in Oligotrophic Marine Environments. Environmental Monitoring and Assessment 178:257-69. https://doi.org/10.1007/s10661-010-1687-x.

Pulido-López, P. C., and G. A. Pinilla-Agudelo. 2017. Evaluación del estado trófico de El Salitre, último humedal urbano de referencia en Bogotá. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 41:41-50. https://doi.org/10.18257/raccefyn.411

Qin, B. Q., G. Gao, G. W. Zhu, Y. L. Zhang, Y. Z. Song, X. M. Tang, H. Xu, and J. M. Deng. 2013. Lake Eutrophication and its ecosystem response. Chinese Science Bulletin 58:961-70. https://doi.org/10.1007/s11434-012-5560-x.

Rahman, M. M., and H. Hamidah. 2020. Water quality influence the phytoplankton and bacteria abundance comparison between shallow freshwater and saltwater ponds. Desalination and Water Treatment 188:436-443. https://doi.org/10.5004/dwt.2020.25306.

Ramírez, R., C. Paredes, and J. Arenas. 2003. Moluscos del Perú. Revista de Biología Tropical 51:225-84. https://doi.org/ 10.15517/rbt.v51i3.26386

Rascón, J., W. Gosgot Angeles, M. Oliva, L. Quiñones, and M. Á. Barrena Gurbillón. 2020. Determinación de las épocas lluviosas y secas en la ciudad de Chachapoyas para el periodo de 2014-2018. Revista de Climatología 20:15-28.

Reichwaldt, E. S., and A. Ghadouani. 2012. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: Between simplistic scenarios and complex dynamics. Water Research 46:1372-93. https://doi.org/10.1016/j.watres.2011.11.052.

Ren, Z., X. Qu, W. Peng, Y. Yu, and M. Zhang. 2019. Functional properties of bacterial communities in water and sediment of the eutrophic river-lake system of Poyang Lake, China. PeerJ 7:e7318. https://doi.org/10.7717/peerj.7318.

Rull, V., J. A. López-Sáez, and T. Vegas-Vilarrúbia. 2008. Contribution of non-pollen palynomorphs to the paleolimnological study of a high-altitude Andean lake (Laguna Verde Alta, Venezuela). Journal of Paleolimnology 40:399-411. https://doi.org/10.1007/s10933-007-9169-z

Santos, J. C. N., E. M. De Andrade, J. R. Araújo Neto, A. C. Maia Meireles, and H. A. Q. Palácio. 2014. Land use and trophic state dynamics in a tropical semi-arid reservoir. Revista Ciência Agronômica 45:35-44. https://doi.org/ 10.1590/S1806-66902014000100005.

Schindler, D. W., R. E. Hecky, and G. K. Mccullough. 2012. The rapid eutrophication of lake Winnipeg: Greening under Global Change. Journal of Great Lakes Research 38:6-13. https://doi.org/10.1016/j.jglr.2012.04.003.

Schoenebeck, C. W., M. L. Brown, S. R. Chipps, and D. R. German. 2012. Nutrient and algal responses to winterkilled fish-derived nutrient subsidies in eutrophic lakes. Lake and Reservoir Management 28:189-99. https://doi.org/10.1080/07438141.2012.693574.

Scordo, F., C. V. Spetter, C. Seitz, M. C. Piccolo, and G. M. E. Perillo. 2020. Spatial and seasonal dynamics of water physical-chemical parameters in rivers and lakes of an Argentinian Patagonia basin. Environmental Earth Sciences 79:1-19. https://doi.org/10.1007/s12665-020-09063-7

Silvino, R. F., and F. A. R. Barbosa. 2015. Eutrophication potential of lakes: An integrated analysis of trophic state, morphometry, land occupation, and land use. Brazilian Journal of Biology 75:607-15. https://doi.org/10.1590/1519-6984.18913.

Van Colen, W., K. Portilla, T. Oña, G. Wyseure, P. Goethals, E. Velarde, and K. Muylaert. 2017. Limnology of the Neotropical High Elevation Shallow Lake Yahuarcocha (Ecuador) and Challenges for Managing Eutrophication Using Biomanipulation. Limnologica 67:37-44. https://doi.org/10.1016/j.limno.2017.07.008.

Venturoti, G. P., A. C. Veronez, R. V. Salla, and L. C. Gomes. 2015. Variation of limnological parameters in a tropical lake used for tilapia cage farming. Aquaculture Reports 2:152-57. https://doi.org/10.1016/j.aqrep.2015.09.006.

Vollenweider, R. A., F. Giovanardi, G. Montanari, and A. Rinaldi. 1998. Characterization of the trophic conditions of marine coastal eaters with special reference to the NW Adriatic Sea: Proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics 9:329-57. https://doi.org/10.1002/(SICI)1099-095X(199805/06)9:3<329::AID-ENV308>3.0.CO;2-9.

Wang, S., J. Li, B. Zhang, E. Spyrakos, A. N. Tyler, Q. Shen, F. Zhang, T. Kusterd, M. K. Lehmanne, Y. Wua, and D. Peng. 2018. Trophic State Assessment of Global Inland Waters Using a MODIS-Derived Forel-Ule Index. Remote Sensing of Environment 217:444-60. https://doi.org/10.1016/j.rse.2018.08.026.

Wetzel, R. G. 2001. Limnology: Lake and River Ecosystems. Academic Press Elservier, San Diego, California, USA.

Yao, L., C. Chen, G. Liu, and W. Liu. 2017. Science of the total environment sediment nitrogen cycling rates and microbial abundance along a submerged vegetation gradient in a eutrophic lake. Science of the Total Environment 616-617:899-907. https://doi.org/10.1016/j.scitotenv.2017.10.230.

Zamparas, M., and I. Zacharias. 2014. Restoration of eutrophic freshwater by managing internal nutrient loads. A review. Science of the Total Environment 496:551-62. https://doi.org/10.1016/j.scitotenv.2014.07.076.

Zhao, X., Y. Zhou, J. Min, S. Wang, W. Shi, and G. Xing. 2012. Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu lake Region of China. Agriculture, Ecosystems and Environment 156:1-11. https://doi.org/10.1016/j.agee.2012.04.024.

Zheng, Z. C., T. X. Li, F. F. Zeng, X. Z. Zhang, H. Y. Yu, Y. D. Wang, and T. Liu. 2013. Accumulation characteristics of and removal of nitrogen and phosphorus from livestock wastewater by Polygonum hydropiper. Agricultural Water Management 117:19-25. https://doi.org/10.1016/j.agwat.2012.10.017.

Variaciones limnológicas espaciotemporales de un lago altoandino tropical al norte de Perú

Published

2021-05-28

How to Cite

Rascón, J., Corroto, F., Leiva Tafur, D., & Gamarra Torres, O. A. (2021). Spatial and temporal dynamics of the trophic state in a tropical high Andean lake in northern Perú. Ecología Austral, 31(2), 343–356. https://doi.org/10.25260/EA.21.31.2.0.1200