Structural variability of the macrophytes community as a function of a pluviometric gradient in the province of Chubut

Authors

  • Alfredo Ñ. Claverie Instituto de Ciencias Polares, Ambiente y Recursos Naturales (UNTDF-CONICET). Ushuaia, Tierra del Fuego, Argentina
  • Luis Epele Centro de Investigación Esquel de Montaña y Estepa Patagónica (CONICET). Esquel, Chubut, Argentina. FCNyCS-Universidad Nacional de la Patagonia San Juan Bosco (CONICET-UNPSJB). Esquel, Chubut, Argentina.
  • Adriana Kutschker Centro de Investigación Esquel de Montaña y Estepa Patagónica (CONICET). Esquel, Chubut, Argentina. FCNyCS-Universidad Nacional de la Patagonia San Juan Bosco (CONICET-UNPSJB). Esquel, Chubut, Argentina.
  • Marta Grech Centro de Investigación Esquel de Montaña y Estepa Patagónica (CONICET). Esquel, Chubut, Argentina. FCNyCS-Universidad Nacional de la Patagonia San Juan Bosco (CONICET-UNPSJB). Esquel, Chubut, Argentina.
  • Luz Manzo Centro de Investigación Esquel de Montaña y Estepa Patagónica (CONICET). Esquel, Chubut, Argentina
  • Laura Miserendino Centro de Investigación Esquel de Montaña y Estepa Patagónica (CONICET). Esquel, Chubut, Argentina. FCNyCS-Universidad Nacional de la Patagonia San Juan Bosco (CONICET-UNPSJB). Esquel, Chubut, Argentina.

DOI:

https://doi.org/10.25260/EA.21.31.3.0.1217

Keywords:

mallines, aquatic plants, macrophytes, wetlands, shallow lakes, Patagonia

Abstract

Mallines are Patagonian wetlands characterized by permanent waterlogging on its soils, sustaining small shallow lakes that hosts a vast biodiversity. In these ecosystems, aquatic plants (i.e. macrophytes) develop different life forms adapted to humid conditions, allowing them to regulate the physical and chemical conditions of the mallín. A distinctive characteristic of Patagonia is the exponential west-east decrease in rainfall, which generates three biozones: forest, ecotone and steppe. These biozones have been typified using landform plants, but whether macrophytes assemblages are related to each biozone or not has not been evaluated yet. The aim of this work is to compare the attributes of the macrophyte and wetlands landform plants community in each biozone. During the 2013-2014 austral Summer, 20 shallow lakes were sampled in the west province of Chubut, assessing macrophyte richness and physical and chemical water variables. Macrophytes were classified according to their life forms, origin, and its diversity was calculated. A total of 62 taxa were determined, most of them corresponding to the Cyperaceae, Poaceae and Ranunculaceae families. The steppe exhibited alkaline pH values, and higher conductivity and soluble reactive phosphorus (SRP) than the ecotone and the forest. High SRP values favored the abundance of macrophytes and macroalgae. However, three sites were eutrophic, exhibiting high chlorophyll a and total phosphorus values. Those sites showed higher abundances of macroalgae and emerging macrophytes. The sampled shallow lakes would act as reservoirs of macrophyte diversity at both local and regional scales. Thus, understanding the relationships among macrophytes and environmental variables could be useful for the mallines biodiversity conservation plans.

Author Biography

Alfredo Ñ. Claverie, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (UNTDF-CONICET). Ushuaia, Tierra del Fuego, Argentina

Licenciado en Ciencias Biologicas, actualmente realizando el Doctorado en conservación de carnivoros.

References

American Public Health Association (APHA). 1992. Standard methods for the examination of water and wastewater. American Water Works Association, Hanover, Maryland, USA.

American Public Health Association (APHA). 1994. Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC, USA.

Balcombe, C., K. Anderson, J. T. Fortney, R. H. Rentch, J. S. Grafton, W. S. Kordek, and W. Virginia. 2005. A comparison of plant communities in mitigation and reference wetlands in the mid-appalachians. Wetlands 25(1):130-142. https://doi.org/10.1672/0277-5212(2005)025[0130:ACOPCI]2.0.CO;2.

Brix, H. 1994. Functions of macrophytes in constructed wetlands. Water Science and Technology 29(4):71-78. https://doi.org/10.2166/wst.1994.0160.

Brönmark, C., and L. A. Hansson. 2002. Environmental cues in lakes and ponds: current state and perspectives. Environmental Conservation 29:290-306. https://doi.org/10.1017/S0376892902000218.

Crego, R. D., C. K. Nielsen, and K. A. Didier. 2013. Climate change and conservation implications for wet meadows in dry Patagonia. Environmental Conservation 41(2):122-131. https://doi.org/10.1017/s037689291300026x.

Burkett, V., and J. Kusler. 2000. Climate change: potential impacts and interactions in wetlands of the United States. Journal of the American Water Resources Association 36(2):313-320. https://doi.org/10.1111/j.1752-1688.2000.tb04270.x.

Carpenter, S. R., and D. M. Lodge. 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26:341-370. https://doi.org/10.1016/0304-3770(86)90031-8.

Chambers, P. A., P. Lacoul, K. J. Murphy and S. M. Thomaz. 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595(1):9-26. https://doi.org/10.1007/s10750-007-9154-6.

Chessel, D., A. B. Dufour, and J. Thioulouse. 2004. The ade4 package-I-One-table methods. R News 4:5-10.

Chimner, R. A., G. L. Bonvissuto, M. V. Cremona, J. J. Gaitán, and C. R. López. 2011. Ecohydrological conditions of wetlands along a precipitation gradient in Patagonia, Argentina. Ecología Austral 21:329-337.

Collantes, M. B., and A. M. Faggi. 1999. Los humedales del sur de Sudamérica. Pp. 15-25 en A. I. Málvarez (ed.). Tópicos sobre humedales subtropicales y templados de Sudamérica. Unesco, Montevideo, Uruguay.

Conde, D., and J. Gorga. 1999. Composición Iónica. Pp. 65-77 en R. Arocena and D. Conde (eds.). Métodos en ecología de aguas continentales, con ejemplos de limnología en Uruguay. DIRAC, Montevideo, Uruguay.

Correa, M. O. 1978-1999. Flora Patagónica. Tomo VIII: parte I, II, III, IVa, IVb, V, y VIII. Colección científica del INTA. Buenos Aires.

Cuassolo, F., E. Balseiro, and B. Modenutti. 2012. Alien vs. native plants in a Patagonian wetland: Elemental ratios and ecosystem stoichiometric impacts. Biological Invasions 14(1):179-189. https://doi.org/10.1007/s10530-011-9995-9.

Epele, L. B., M. G. Grech, L. M. Manzo, P. A. Macchi, V. Hermoso, M. L. Miserendino, N. Bonada, and M. Cañedo-Argüelles. 2021. Identifying high priority conservation areas for Patagonian wetlands biodiversity. Biodiversity and Conservation 30:1359-1374. https://doi.org/10.1007/s10531-021-02146-2.

Epele, L. B., L. Manzo, M. Grech, P. Macchi, A. Ñ. Claverie, L. Lagomarsino, and M. L. Miserendino. 2018. Disentangling natural and anthropogenic influences on Patagonian pond water quality. Science of the Total Environment 613-614:866-876. https://doi.org/10.1016/j.scitotenv.2017.09.147.

Epele, L. B., and M. L. Miserendino. 2015. Temporal dynamics of invertebrate and aquatic plant communities at three intermittent ponds in livestock grazed Patagonian wetlands grazed Patagonian wetlands. Journal of Natural History 50:711-730. https://doi.org/10.1080/00222933.2015.1062930

Erize, E. 1960. Diccionario comentado Mapuche-Español. Araucano, Pehuenche, Pampa, Picunche, Rancülhue, Huilliche. Editorial Peuser y Cuadernos del Sur, Buenos Aires, Argentina.

Gaitán, J. J., C. R. López, and D. Bran. 2011. Vegetation composition and its relationship with the environment in mallines of north Patagonia, Argentina. Wetlands Ecology Manage 19:121-130. https://doi.org/10.1007/s11273-010-9205-z.

Gaitán, J. J., D. Bran, G. Oliva, F. T. Maestre, and M. R. Aguiar. 2014. Plant species richness and shrub cover attenuate drought effects on ecosystem functioning across Patagonian rangelands. Biology Letters 10:1020140673. https://doi.org/10.1098/rsbl.2014.0673.

Gosselink, J. G., and E. Turner. 1978. The role of hydrology in fresh water wetland ecosystems. Pp. 63-78 en R. E. Good, D. F. Whigham and R. L. Simpson (eds.). Freshwater Wetlands: Ecological Processes and Management Potential. Academic Press, New York, USA.

Hauenstein, E., M. Gonzáles, F. Peña-Cortez and A. Muñoz-Pedreros. 2002. Clasificación y caracterización de la flora y vegetación de los humedales de la costa de Toltén (IX Región, Chile). Gayana Botánica 59:87-100. https://doi.org/10.4067/S0717-66432002000200006.

Hauer, F. R., and G. A. Lamberti. 1996. Methods in stream ecology. Academic Press. New York, USA.

Hauser, A. 1984. Mallines: Caracterización geológica, geomorfológica y geotécnica; métodos constructivos utilizados en el camino longitudinal austral para sobrepasarlos. Revista Geológica de Chile 22:77-89.

Iriondo, M. 1989. Quaternary lakes of Argentina. Palaeogeography, Palaeoclimatology and Palaeoecology 70:81-88. https://doi.org/10.1016/0031-0182(89)90081-3.

Jocou, A. I., C. Fernández, and R. Gandullo. 2018. Macrófitas acuáticas vasculares del sistema de drenaje del Alto Valle de Río Negro, Patagonia (Argentina). Revista del Museo de La Plata 3:296-308. https://doi.org/10.24215/25456377e060.

Junk, W. J., P. B. Bayley and R. E. Sparks. 1989. The flood pulse concept in river-floodplain systems. Canadian special publication of fisheries and aquatic sciences 106(1):110-127.

Kolada, A. 2016. The use of helophytes in assessing eutrophication of temperate lowland lakes: Added value? Aquatic Botany 129:44-54. https://doi.org/10.1016/j.aquabot.2015.12.002.

Kutschker, A., L. B. Epele, and M. L. Miserendino. 2014. Aquatic plant biodiversity and environmental relationships in grazed northwest Patagonian wetlands, Argentina. Ecological Engineering 64:37-48. https://doi.org/10.1016/j.ecoleng.2013.12.007.

León, R. C., D. Bran, M. Collantes, J. M. Paruelo, and A. Soriano. 1998. Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral 8:125-144.

Luque, J. L., and M. Amari. 1997. Características edáficas e hídricas de los mallines del Chubut. Estación experimental agropecuaria INTA. Laboratorio de análisis agronómicos. Trelew, Chubut, Argentina.

Macchi, P. A. 2017. Macroinvertebrados acuáticos como indicadores de cambios en el uso del suelo en mallines del sudoeste de la provincia de Río Negro. Tesis de doctorado. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata, Buenos Aires. Argentina. Pp. 227.

Manzo, L. M., M. G. Grech, L. B. Epele, A. M. Kutschker, and M. L. Miserendino. 2020. Macrophyte regional patterns, metrics assessment and ecological integrity of isolated ponds at Austral Patagonia (Argentina). Science of The Total Environment 727:138617. https://doi.org/10.1016/j.scitotenv.2020.138617

Mitsch, W. J., and J. G. Gosselink. 2015. Wetlands, 5th edn. John Wiley and Sons, Hoboken, New Jersey, USA.

Moreno Franco, D., J. Quintero, and A. López. 2010. Métodos para identificar, diagnosticar y evaluar el grado de eutrofia. Revista Contactos 78:25-33.

Mushet, D. M., N. H. Euliss Jr., and T. L. Shaffer. 2002. Floristic quality assessment of one natural and three restored wetland complexes in North Dakota, USA. Wetlands 22(1):126-138. https://doi.org/10.1672/0277-5212(2002)022[0126:FQAOON]2.0.CO;2.

OECD. 1982. Eutrophication of waters. Monitoring, assessment and control. OECD, Paris, Francia.

Osborne, L.R. 2012. Phosphorus Immobilization of Lead in Wetland Soils of the Coeur D'Alene River Basin, Idaho. Doctoral Thesis. University of Idaho, Moscow, Idaho, USA.

Paruelo, J. M., R. A. Golluscio, J. P. Guerschman, A. Cesa, V. V. Jouve, and M. F. Garbulsky. 2004. Regional scale relationships between ecosystem structure and functioning: the case of the Patagonian steppes. Global, Ecology and Biogeography 13:385-395. https://doi.org/10.1111/j.1466-822X.2004.00118.x.

Paruelo, J. M., A. Beltrán, E. Jobbágy, O. E Sala, and R. A. Golluscio. 1998. The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8:85-101.

Perotti, M. G., C. Diéguez, P. Pérez, and F. Jara. 2004. Consideraciones sobre el efecto de las variables del clima y las interacciones biológicas sobre las comunidades acuáticas de humedales patagónicos. Actas del taller: Los Mallines en la Patagonia Argentina. Volumen 4. INTA, Ciefap, Esquel, Chubut, Argentina.

Perotti, M. G., M. C. Diéguez, and F. Jara. 2005. Estado del conocimiento de humedales del norte patagónico (Argentina): aspectos relevantes e importancia para la conservación de la biodiversidad regional. Revista Chilena de Historia Natural 78:723-737. https://doi.org/10.4067/S0716-078X2005000400011.

R Development Core Team. 2016. R: A Language and Environment for Statistical Computing. R Version 3.2.3. R Foundation for Statistical Computing, Vienna, Austria.

Raffaele, E. 1999. Mallines: Aspectos generales y problemas particulares. Pp. 27-34 en A. I. Malvárez (ed.). Tópicos sobre humedales subtropicales y templados de Sudamérica. UNESCO, Montevideo, Uruguay.

Rogers, F. E. J., K. H. Rogers, and J. S. Buzer. 1985. Wetlands for Wastewater Treatment with Special Reference to Municipal. Wastewaters. Witwatersrand University Press, Johannesburg, South Africa.

Roldán, P. G., and J. J. Ramírez. 2008. Fundamentos de limnología neotropical, 2º edición . Editorial Universidad de Antioquia, Medellín, Colombia.

San Martín, C., Y. Pérez, M. Álvarez, C. Salazar, and C. Ramírez. 2013. Diversidad vegetal de lagunas temporales en la estepa patagónica chilena noroccidental. Anales Instituto Patagonia 41:111-116. https://doi.org/10.4067/S0718-686X2013000200012.

Sayer, C. D., T. A. Davidson, and J. I. Jones. 2010. Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication‐driven pathway from plants to plankton? Freshwater Biology 55(3):500-513. https://doi.org/10.1111/j.1365-2427.2009.02365.x.

Secretaría de la Convención de Ramsar. 2006. Manual de la Convención de Ramsar: Guía a la Convención sobre los Humedales (Ramsar, Irán, 1971). 4° edición. Secretaría de la Convención de Ramsar. Gland, Suiza.

Svitok, M., M. Novikmec, L. Hamerlík, J. Kochjarová, H. Otahelóvá, P. Palove-Balang, D. Senko, Z. Matúsová, K. Buvíková, and R. Hrivnák. 2018. Test of the efficiency of environmental surrogates for the conservation prioritization of ponds based on macrophytes. Ecological Indicators 95(1):606-614. https://doi.org/10.1016/j.ecolind.2018.08.006.

Søndergaard, M., T. L. Lauridsen, L. S. Johansson, and E. Jeppesen. 2017. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 795(1):35-48. https://doi.org/10.1007/s10750-017-3110-x.

ter Braak, C. J. F., and P. Smilauer. 1998. CANOCO Reference manual and User's guide t Canoco for Windows: software for Canonical Community Ordination (version 4). Microcomputer Power. Ithaca, New York, USA.

Thomaz, S. M., and E. R. Cunha. 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages' composition and biodiversity. Acta Limnologica Brasiliensia 22(02):218-236. https://doi.org/10.4322/actalb.02202011

Thomaz, S. M., F. A. Lansac-Tôha, M. C. Roberto, F. A. Esteves, and A. F Lima. 1992. Seasonal variation of some limnological features of lagoa do Guaraná, a várzea lake of the High Rio Paraná, State of Mato Grosso do Sul, Brazil. Revue d´Hydrobiolgie Tropicale 25(4):269-276.

Urrutia, J., P. Sánchez, A. Pauchard, and E. Hauenstein. 2017. Invasive aquatic plants presents in Chile: Distribution, traits of life and invasive potential. Gayana - Botanica 74:147-157. https://doi.org/10.4067/S0717-66432017005000324.

U.S. Environmental Protection Agency. 2002. Health assessment document for diesel engine exhaust. National Center for Environmental Assessment, Washington DC, USA.

del Valle, H. F., N. O. Elissalde, D. A. Gagliardini, and J. Milovich. 1998. Status of desertification in the Patagonian region: Assessment and mapping from satellite imagery. Arid Soil Research and Rehabilitation 12:1-27. https://doi.org/10.1080/15324989809381502.

Zuloaga, F., O. Morrone, and M. Belgrano. 2008. Catálogo de las plantas vasculares del Cono Sur. Monographs in Systematic Botany from the Missouri Botanical Garden 107:1-3348.

Variabilidad estructural de la comunidad de macrófitas en un gradiente pluviométrico en la provincia de Chubut

Published

2021-08-13

How to Cite

Claverie, A. Ñ., Epele, L., Kutschker, A., Grech, M., Manzo, L., & Miserendino, L. (2021). Structural variability of the macrophytes community as a function of a pluviometric gradient in the province of Chubut. Ecología Austral, 31(3), 431–443. https://doi.org/10.25260/EA.21.31.3.0.1217