Bees avoid flowers with artificial models of spiders

Authors

  • Nayara Carvalho Programa de Pós Graduação em Ecologia e Conservação. Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil.
  • Josué Raizer Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Brasil.
  • Augusto Cesar de Aquino Riba Programa de Pós Graduação em Ecologia e Conservação. Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil.
  • Milena Delatorre Programa de Pós Graduação em Ecologia e Conservação. Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil.

DOI:

https://doi.org/10.25260/EA.12.22.3.0.1228

Keywords:

Apis mellifera, crypsis, indirect interaction, predation

Abstract

Spiders hunting on flowers can change pollinators’ behavior and therefore change the reproductive success of plants. However, it is not still completely known how different groups of pollinators react to the presence of spiders and in what circumstances there is a reduction in the plants’ success. In this study, we evaluated the frequency of floral visits and Apis mellifera L. (Apidae) behavior against the risk of predation simulated by spiders models made of epoxy resin. The models presence has reduced the number of visits to Ludwigia tomentosa (Cambess.) (Onagraceae) flowers and increased the proportion of refusing behavior in which bees suddenly abandoned the flowers without accessing the nectaries. This result suggests that bees perceive morphological traits of predators on flowers, recognizing it as a low value source due to the risk of being predated.

References

ABBOTT, KR. 2010. Background evolution in camouflage systems: A predator-prey/pollinator-flower game. Journal of Theoretical Biology, 262:662-678.

CHITTKA, L. 2001. Camouflage of predatory crab spiders on flowers and the colour perception of bees. Entomological Genetics, 25:181-187.

DEFRIZE, J; T MARC & C JÉRÔME. 2010. Background colour matching by a crab spider in the field: a community sensory ecology perspective. The Journal of Experimental Biology, 213:1425-1435.

DICKE, M & P GROSTAL. 2001. Chemical detection of natural enemies by arthropods: an ecological perspective. Annual Review of Ecology and Systematics, 32:1-23.

DUKAS, R. 2001. Effects of perceived danger on flower choice by bees. Ecology Letters, 4:327-333.

DUKAS, R & DH MORSE. 2003. Crab spiders affect flower visitation by bees. Oikos, 101:157-163.

DUKAS, R & DH MORSE. 2005. Crab spiders show mixed effects on flower visiting bees and no effect on plant fitness. Ecoscience, 12:244-247.

FREITAS, AVL & PS OLIVEIRA. 1996. Ants as selective agents on herbivore biology: effects on the behaviour of a non-myrmecophilous butterfly. Journal of Animal Ecology, 65:205-210.

GONÇALVES-SOUZA, T; PM OMENA & GQ ROMERO. 2008. Trait-mediated effects on flowers: artificial spiders deceive pollinators and decrease plant fitness. Ecology, 89:2407-2413.

HALAJ, J & DH WISE. 2001. Terrestrial trophic cascades: how much do they trickle? American Naturalist, 157:262-281.

HARRIS, MB; C ARCANGELO; ECT PINTO; G CAMARGO; MB RAMOS-NETO; ET AL. 2005. Estimativas de perda da área natural da Bacia do Alto Paraguai e Pantanal Brasileiro. Conservação Internacional, Campo Grande, MS.

HEILING, AM; K CHENG & ME HERBERSTEIN. 2004. Exploitation of floral signals by crab spiders (Thomisusspectabilis, Thomisidae). Behavioral Ecology, 15:321-326.

JONES, EI & A DORNHAUS. 2011. Predation risk makes bees reject rewarding flowers and reduce foraging activity. Behavioral Ecology and Sociobiology, 65:1505-1511.

LEONARD, AS; A DORNHAUS & DR PAPAJ. 2010. Flowers help bees cope with uncertainty: signal detection and the function of floral Complexity. The Journal of Experimental Biology, 214:113-121.

MORSE, DH. 2007. Predator upon a flower: life history and fitness in a crab spider. Harvard University Press. Pp. 392.

NESS, JH. 2006. A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos, 113:506-514.

POTT, A & VJ POTT. 2000. Plantas aquáticas do Pantanal. 1a edição. Embrapa. Comunicação para a transferência de tecnologia, Corumbá, MS. Pp. 404.

R DEVELOPMENT CORE TEAM. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. www.R-project.org.

ROCHA-FILHO, LC & IMP RINALDI. 2011. Crab spiders (Araneae: Thomisidae) in flowering plants in a Brazilian “Cerrado” ecosystem. Brazilian Journal of Biology, 71:359-364.

ROMERO, GQ & J VASCONCELLOS-NETO. 2005. Spatial distribution and microhabitat preference of Psecas chapoda (Peckham&Peckham) (Araneae, Salticidae). Journal of Arachnology, 33:124-134.

ROMERO, GQ & J KORICHEVA. 2011. Contrasting cascade effects of carnivores on plant fitness: a meta-analysis. Journal of Animal Ecology, 80:696-704.

STOKS, R; MA MCPEEK & JL MITCHELL. 2003. Evolution of prey behavior in response to changes in predation regime: damselflies in fish and dragonfly lakes. Evolution, 57:574-585.

SUTTLE, KB. 2003. Pollinators as mediators of top-down effects on plants. Ecology Letters, 6:688-694.

THÉRY, M & J CASAS. 2002. Predator and prey views of spider camouflage. Nature, 415:133-133.

WIGNALL, AE; AM HEILING; K CHENG & ME HERBERSTEIN. 2006. Flower symmetry preferences in honeybees and their crab spiders predators. Ethology, 112:510-518.

ZAR, J. 2009. Biostatistical analysis. 5th edition. Prentice- Hall, London. Pp. 960.

Published

2012-12-01

How to Cite

Carvalho, N., Raizer, J., de Aquino Riba, A. C., & Delatorre, M. (2012). Bees avoid flowers with artificial models of spiders. Ecología Austral, 22(3), 211–214. https://doi.org/10.25260/EA.12.22.3.0.1228

Issue

Section

Short Communications