Early observations of volcanic ash deposition and its impact on the vegetation steppes of NW Patagonia

Authors

  • Luciana Ghermandi Laboratorio Ecotono, Instituto Nacional de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue. San Carlos de Bariloche, Argentina.
  • Sofía Gonzalez Laboratorio Ecotono, Instituto Nacional de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue. San Carlos de Bariloche, Argentina.

Keywords:

volcanic ash, gaps, regeneration strategy, perennial herbs, Patagonian grasslands

Abstract

The Cordón Caulle volcanic complex, located in the Andes (Chile), have erupted in June 2011, and has has been emitting ash with different intensity since then, that the dominant winds have deposited in the Argentinean Patagonia. Here we quantifi ed the amount of deposited ash in the gaps between the vegetation of northwestern Patagonia steppe in order to estimate the early impact of ash on functional groups present in gaps; and we analyzed the relationship between post-eruption rainfalls and ash dynamics. We compared species frequency in pre-eruption gaps (November 2010) and post-eruption gaps (October 2011 and January 2012). Thickness average of ash deposited in gaps was 3.4 cm. Post-eruption rains were scarce and limited the ash incorporation into the soil, causing a greater impact on vegetation. Species presence in gaps was lower than usually registered in this microsite type. Recruitment of annual and matrix dominant species was not observed. The most common species was the exotic herb Rumex acetosella. Perennial grasses present in gaps have subterranean structures that allow them to reproduce after the deposition of volcanic ashes. Volcanic activity has been very important in this region and it is likely that species have evolved in the presence of this disturbance.

References

ANCHORENA, J; AM CINGOLANI & D BRAN. 1993. Mapa de vegetación de Estancia San Ramón. Comunicación técnica N° 24. Recursos Naturales-Relevamiento, Proy. Ludepa, Convenio INTA-GTZ, S.C. de Bariloche, Argentina.

BESOAIN, EM; R RUIZ & CK HEPP. 1995. La erupción del volcán Hudson, XI región y sus consecuencias para la agricultura. Agricultura Técnica (Chile), 55:204-219.

BRADSHAW, SD; KW DIXON; DS HOPPER; H LAMBERS & SR TURNER. 2011. Little evidence for fire-adapted plant traits in Mediterranean climate regions. Trends in Plant Sci., 16:69-76.

CABRERA, AL. 1971. Compositae. En: Correa, MN (ed.). Flora Patagónica 7. ACME, Buenos Aires, Argentina.

CHAPIN, D & LC BLISS. 1988. Soil-plant water relations of two subalpine herbs from Mount St. Helens. Can. J. Bot., 66:809-818.

DEL MORAL, R & SY GRISHIN. 1999. The consequences of volcanic eruptions. Capítulo 5. Pp.137-159 en: Walker, LR (ed.). Ecosystems of Disturbed Ground. Ed. Elsevier Science, Amsterdam.

FRANZESE, J & L GHERMANDI. 2011. Effect of fire on recruitment of two dominant perennial grasses with different palatability from semi-arid grasslands of NW Patagonia (Argentina). Plant Ecol., 213:471-481.

GAITÁN, JJ; JA AYESA; F UMAÑA; F RAFFO & DB BRAN. 2011. Cartografía del área afectada por cenizas volcánicas en las provincias de Río Negro y Neuquén. Informe Técnico. Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental S.C. de Bariloche.

GHERMANDI, L; N GUTHMANN & D BRAN. 2004. Early post-fi re succession in northwestern Patagonia grasslands. J. Veg. Sci., 15:67-76.

GHERMANDI, L & S GONZALEZ. 2009. Diversity and functional groups dynamics affected by drought and fire in Patagonia grasslands. Ecoscience, 16:408-417.

GONZALEZ, S & L GHERMANDI. 2008. Postfire seed bank dynamics on semiarid grasslands. Plant Ecol., 199:175-185.

HARPER, JL. 1977. Population biology of plants. Academic Press, London. Pp. 892. Herbario digital INTA. 2012. herbariodigital.inta.gob.ar. Consultado el 19-01-2012.

INFOBAE. www.infobae.com/notas/614093-Rige-alerta-roja-por-erupcion-del-volcan-Hudson.html. Consultado el 30-12-2011.

KEELEY, JE; JG PAUSAS; PW RUNDEL; WJ BOND & RA BRADSTOCK. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Sci., 16:406-411.

MAZZOLENI, S & M RICCIARDI. 1993. Primary succession on the cone of Vesuvius. Pp.101-112 en: MILES, J & DWH WALTON (eds.). Primary succession on land. Ed. Blackwell Scientifi c Publications, Vienna.

RAMOS, VA. 1999. Rasgos estructurales del territorio argentino. 1. Evolución tectónica de la Argentina. Anales, 29:715-784.

SERVICIO NACIONAL DE GEOLOGÍA Y MINERÍA DE CHILE. 2012. www2.sernageomin.cl/ovdas/ovdas7/informativos2/RAV_XIV_2010.html. Consultado el 17-04-2012.

SHINAGAWA, A. 1962. Futher accumulation of humus on the volcanic ash soils originated from volcano Sakurajimás ashes. Kagoshima University. Bulletin Faculty of Agronomy, 11:115-205.

SIFFREDI, G; D LÓPEZ, J AYESA, E BIANCHI, V VELASCO; ET AL. 2011. Reducción de la accesibilidad al forraje por caída de cenizas volcánicas. Revista Presencia. Edición Especial, 57:20-25.

VILLAGRA, S; J AYESA; F RAFFO & M EASDALE. 2011. Análisis productive y especial de la zona afectada por la caída de cenizas del Cordón Caulle-Puyehue para la Patagonia Norte. Revista Presencia. Edición Especial, 57:20-25

Published

2012-08-01

How to Cite

Ghermandi, L., & Gonzalez, S. (2012). Early observations of volcanic ash deposition and its impact on the vegetation steppes of NW Patagonia. Ecología Austral, 22(2), 144–149. Retrieved from https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1258

Issue

Section

Short Communications