Water use by olive orchards (Olea europaea L.) in the Northwest of Argentina: a comparison with the Mediterranean Basin

Authors

  • Peter S. Searles CRILAR-CONICET. Anillaco, La Rioja, Argentina.
  • Martín Agüero Alcarás CRILAR-CONICET. Anillaco, La Rioja, Argentina.
  • María C. Rousseaux CRILAR-CONICET. Anillaco, La Rioja, Argentina.

Keywords:

potential evapotranspiration, leaf conductance, soil evaporation, sap flow, deficit irrigation, transpiration

Abstract

In the last 20 years, there has been a great expansion in the land area planted with olive trees (Olea europaea L.) in the Northwest of Argentina (NWA). Nevertheless, most of the information utilized in management decisions in the region concerning crop water use comes from the Mediterranean Basin. This review discusses: 1) differences in climate between the Mediterranean Basin and the olive production areas in the NWA, 2) water use by olive in the Mediterranean and ecophysiological responses to water stress, and 3) experimental results from the NWA using Aimogasta (La Rioja) as a case study. Meteorological data indicate that the air temperature (primarily in the winter and spring) and the annual potential evapotranspiration (ETo) are higher in the NWA than in the Mediterranean, while precipitation is less. Differences in temperature have been shown to result in lack of chilling hours for flowering in some varieties, advances in phenological stages, and changes in oil quality and quantity in NWA relative to the Mediterranean. Experimental results from the Mediterranean show that transpiration, yield, and other variables respond strongly to irrigation although olive is a species with a high tolerance to water stress in comparison to other fruit trees. Similar to the Mediterranean, olive water use in Aimogasta was estimated to be 70-75% of ETo under optimally irrigated conditions. Considering the differences in the ETo values in the two regions, water use is 1100-1200 mm/year in the NWA and 900-1000 in the Mediterranean. Additionally, the required irrigation is more than double due to the lack of precipitation in many areas. An unanticipated result in Aimogasta based on the studies from the Mediterranean was the excessive vegetative growth under high irrigation conditions. The excessive vigour was potentially a response to the irrigation in interaction with the high spring temperatures that occur in the region. The development of regulated deficit irrigation strategies in the spring (or in other time periods) could save water and improve the ratio of vegetative to reproductive growth.

References

ALLEN, RG; LS PEREIRA; D RAES & M SMITH. 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAOIrrigation and Drainage Paper No. 56. FAO, Rome.

AYBAR V. 2010. Floración en olivo (Olea europaea L.): evaluación del ajuste de un modelo predictivo para las condiciones del Chaco Árido argentino y utilización de hormonas exógenas. Tesis de Maestría, Universidad de Buenos Aires.

AYERZA, R & GS SIBBETT. 2001. Thermal adaptability of olive (Olea europaea L.) to the Arid Chaco of Argentina. Agric. Ecosyst. Environ. 84:277-285.

BEN-GAL, A; N AGAM; V ALCHANATIS; Y COHEN; U YERMIYAHU; ET AL. 2009. Evaluating water stress in irrigated olives: correlation of soil water status, tree water status, and thermal imagery. Irrig. Sci. 27:367-376.

BONACHELA, S; F ORGAZ; FJ VILLALOBOS & E FERERES. 2001. Soil evaporation from drip-irrigated olive orchards. Irrig. Sci. 20:65-71.

BEEDE, RH & DA GOLDHAMER. 2005. Olive Irrigation Management. Pp. 61-69 en: Sibbett, GS & L Ferguson (eds.). Olive Production Manual. University of California, Oakland. EE.UU.

CECI, LN & AA CARELLI. 2010. Compositional data review of monovarietal Argentinian olive oils. Pp. 71-97 en: Tomás, MB (ed.). Advances in Fats and Oil Research. Transworld Research Network, Kerala, India.

CONNOR, DJ. 2005. Adaptation of olive (Olea europaea L.) to water-limited environments. Aust. J. Agric. Res. 56:1181-1189.

CONNOR, DJ & E FERERES. 2005. The physiology of adaptation and yield expression in olive. Hortic. Rev. 31:155-229.

CORREA-TEDESCO, G; MC ROUSSEAUX & PS SEARLES. 2010. Plant growth and yield responses in olive (Olea europaea) to different irrigation levels in an arid region of Argentina. Agric. Water Manage. 97:1829-1837.

CUEVAS, MV; JM TORRES-RUIZ; R ÁLVAREZ; MD JIMÉNEZ; J CUERVA; ET AL. 2010. Assessment of trunk diameter variation derived indices as water stress indicators in mature olive trees. Agric. Water Manage. 97:1293-1302.

DE MELO-ABREU, JP; D BARRANCO; AM CORDEIRO; J TOUS; BM ROGADO; ET AL. 2004. Modelling olive flowering date using chilling for dormancy release and thermal time. Agric. Forest Meteorol. 125:117-127.

DICHIO, B; C XILOYANNIS; A SOFO & G MONTANARO. 2005. Osmotic regulation in leaves and roots of olive trees during a water deficit and rewatering. Tree Physiol. 26:179-185.

DICHIO, B; G MARGIOTTA; C XILOYANNIS; SA BUFO; A SOFO; ET AL. 2009. Changes in water status and osmolyte contents in leaves and roots of olive plants (Olea europaea L.) subjected to water deficit. Trees 23:247-256.

FERERES, E & JR CASTEL. 1981. Drip irrigation management. Division of Agricultural Sciences. University of California Publication Leaflet 21259.

FERERES, E & MA SORIANO. 2007. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 58:147-159.

FERERES, E. 2008. The future of irrigation in horticulture. Chronica Hortic. 48:9-11.

FERNÁNDEZ, JE; F MORENO; IF GIRON & OM BLAZQUEZ. 1997. Stomatal control of water use in olive tree leaves. Plant Soil 190:179-192.

FERNÁNDEZ, JE & F MORENO. 1999. Water use by the olive tree. J. Crop Prod. 2:101-162.

FERNÁNDEZ, JE; A DíAZ-ESPEJO; JM INFANTE; P DURAN; MJ PALOMO; ET AL. 2006. Water relations and gas exchange in olive trees under regulated deficit and partial rootzone drying. Plant Soil 284:273-291.

FERNÁNDEZ, JE; PJ DURÁN; MJ PALOMO; A DIAZ-ESPEJO; V CHAMORRO; ET AL. 2006. Calibration of sap flow estimated by the compensation heat pulse method in olive, plum and orange trees: relationships with xylem anatomy. Tree Physiol. 26:719-728.

FERNÁNDEZ, JE; A DíAZ-ESPEJO; R D ́ANDRIA; L SEBASTIANI & R TOGNETTI. 2008. Potential and limitations of improving olive orchard design and management through modelling. Plant Biosyst. 142:130-137.

FERNÁNDEZ, JE & MV CUEVAS. 2010. Irrigation scheduling from stem diameter variations: A review. Agric. Forest Meteorol. 150:135-151.

FAO. 2010. Aquastat. www.fao.org/nr/water/aquastat/main/indexesp.stm.

GARCES-RESTREPO, C; D VERMILLION & G MUÑOZ. 2007. Irrigation management transfer: worldwide efforts and results. FAO Water Reports No. 32. FAO, Roma.

GIORIO, P; G SORRENTINO & R D’ANDRIA. 1999. Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Environ. Exp. Bot. 42:95-104.

GIRONA, J; M LUNA; M ARBONES; J MATA; J RUFAT; ET AL. 2002. Young olive tree responses (Olea europea, cv “Arbequina”) to different water supplies. Water function determination. Acta Hortic. 568:277-280.

GLEICK, PH. 2003. Water use. Annu. Rev. Environ. Resour. 28:275-314.

GOLDHAMER, DA; J DUNAI & L FERGUSON. 1993. Water use requirements of Manzanillo olives and responses to sustained deficit irrigation. Acta Hortic. 335:365-372.

GOLDHAMER, DA. 1999. Regulated deficit irrigation for California canning olives. Acta Hortic. 474:369-372.

GÓMEZ DEL CAMPO, M; A LEAL & C PEZUELA. 2008. Relationship of stem water potential and leaf conductance to vegetative growth of young olive trees in a hedgerow orchard. Aust. J. Agric. Res. 59:270-279.

GREVEN, M; S NEAL; S GREEN; B DICHIO & B CLOTHIER. 2009. The effects of drought on the water use, fruit development and oil yield from young olive trees. Agric. Water Manage. 96:1525-1531.

GRATTAN, SR; MJ BERENGUER; JH CONNELL; VS POLITO & PM VOSSEN. 2006. Olive oil production as influenced by different quantities of applied water. Agric. Water Manage. 85:133-140.

HACKE, UG & JS SPERRY. 2001. Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Syst. 4:97-115.

INIESTA, F; L TESTI; F ORGAZ & FJ VILLALOBOS. 2009. The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees. Eur. J. Agron. 30:258-265.

MANNINA, L; G FONTANAZZA; M PATUMI; G ANSANELLI & A SEGRE. 2001. Italian and Argentine olive oils: a NMR and gas chromatographic study. Grasas y Aceites 52:380-388.

MCNAUGHTON, KG & PG JARVIS. 1983. Predicting effects of vegetation changes on transpiration and evaporation. Pp. 1-47 en: KOSLOWSKY, TT (ed.). Water Deficit and Plant Growth. Academic Press, New York. EE.UU.

METHENEY, PD; L FERGUSON; DA GOLDHAMER & J DUNAI. 1994. Effects of irrigation on Manzanillo olive flowering and shoot growth. Acta Hortic. 356:168-171.

MORENO, F; W CONEJERO; MJ MARTÍN-PALOMO; IF GIRÓN & A TORRECILLAS. 2006. Maximum daily trunk shrinkage reference values for irrigation scheduling in olive trees. Agric. Water Manage. 84:290-294.

MORIANA, A; E FERERES; F ORGAZ; J CASTRO; MD HUMANES; ET AL. 2000. The relations between trunk diameter fluctuations and tree water status in olive trees (Olea europea L.). Acta Hortic. 357:293-297.

MORIANA, A; FJ VILLALOBOS & E FERERES. 2002. Stomatal and photosynthetic responses of olive (Olea europaea L.) leaves to water deficits. Plant Cell Environ. 25:395-405.

MORIANA, A; F ORGAZ; M PASTOR & E FERERES. 2003. Yield responses of a mature olive orchard to water deficits. J. Am. Soc. Hortic. Sci. 128:425-431.

MORIANA, A; IF GIRÓN; MJ MARTÍN-PALOMO; W CONEJERO; MF ORTUÑO; ET AL. 2010. New approach for olive trees irrigation scheduling using trunk diameter sensors. Agric. Water Manage. 97:1822-1828.

ORGAZ, F; FJ VILLALOBOS; L TESTI & E FERERES. 2007. A model of daily mean canopy conductance for calculating transpiration of olive canopies. Funct. Plant Biol. 34:178-188.

ORGAZ, F & E FERERES. 2008. Riego. Pp. 337-362 en: BARRANCO, D; R FERNANDEZ-ESCOBAR & L RALLO (eds.). El Cultivo de Olivo. Mundi-Prensa, Madrid. España.

ORTUÑO, MF; W CONEJERO; F MORENO; A MORIANA; DS INTRIGLIOLO; ET AL. 2010. Could trunk diameters sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives. Agric. Water Manage. 97:1-11.

PÉREZ-LÓPEZ, D; MC GIJÓN & A MORIANA. 2008. Influence of irrigation rate on the rehydration of olive tree plantlets. Agric. Water Manage. 95:1161-1166.

RAMOS, AF & FL SANTOS. 2009. Water use, transpiration, and crop coefficients for olives (cv. Cordovil), grown in orchards in Southern Portugal. Biosystems Eng. 102:321-333.

RANA, G & N KATERJI. 2000. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. Eur. J. Agron. 13:125-153.

RITCHIE, JT. 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 8:1204-1213.

RONDANINI, D; D RUIZ; S ARAUJO; D DEL CARRIL; EA GARCÍA; ET AL. 2007. Caracterización de los aceites varietales de oliva virgen elaborados en los valles cálidos de La Rioja (Argentina). Campañas 2005 y 2006. Aceites y Grasas 69:654-659.

ROUSSEAUX, MC; JP BENEDETTI & PS SEARLES. 2008. Leaf-level responses of olive trees (Olea europaea) to the suspension of irrigation during the winter in an arid region of Argentina. Sci. Hortic. 115:135-141.

ROUSSEAUX, MC; PI FIGUEROLA; G CORREA-TEDESCO & PS SEARLES. 2009. Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid region of Argentina. Agric. Water Manage. 96:1037-1044.

SAGPYA (Secretaría de Agricultura, Ganadería, Pesca y Alimentos). 2008. Cadenas Alimentarias: Producción olivicola. www.alimentosargentinos.gov.ar/olivicola/.

SELLES, G; ER FERREYRA; MI SELLES & SG LEMUS. 2006. Efecto de diferentes regimenes de riego sobre la carga frutal, tamaño de fruta y rendimiento del olivo cv. sevillana. Agric. Técnica 66:48-56.

SEPULCRE-CANTÓ, G; PJ ZARCO-TEJADA; JC JIMÉNEZ-MUÑOZ; JA SOBRINO; E DE MIGUEL; ET AL. 2006. Detection of water stress in an olive orchard with thermal remote sensing imagery. Agric. For. Meteorol. 136:31-44.

SEPULCRE-CANTÓ, G; PJ ZARCO-TEJADA; JA SOBRINO; J BERNI; JC JIMÉNEZ-MUÑOZ; ET AL. 2009. Discriminating irrigated and rainfed olive orchards with thermal ASTER imagery and DART 3D simulation. Agric. For. Meteorol. 149:962-975.

TESTI, L; FJ VILLALOBOS & F ORGAZ. 2004. Evapotranspiration of a young irrigated olive orchard in southern Spain. Agric. For. Meteorol. 121:1-18.

TESTI, L; FJ VILLALOBOS; F ORGAZ & E FERERES. 2006. Water requirements of olive orchards: I simulation of daily evapotranspiration for scenario analysis. Irrig. Sci. 24:69-76.

TOGNETTI, R; R D’ANDRIA; G MORELLI; D CALANDRELLI & F FRAGNITO. 2004. Irrigation effects on daily and seasonal variations of trunk sap flow and leaf water relations in olive trees. Plant Soil 263:249-264.

TOGNETTI, R; A GIOVANNELLI; A LAVINI; G MORELLI; F FRAGNITO; ET AL. 2009. Assessing environmental controls over conductances through the soil-plant-atmosphere continuum in an experimental olive tree plantation of southern Italy. Agric. For. Meteorol. 129:1229-1243.

VILLALOBOS, FJ; F ORGAZ; L TESTI & E FERERES. 2000. Measurement and modeling of evapotranspiration of olive (Olea europaea L.) orchards. Eur. J. Agron. 13:155-163.

VILLALOBOS, FJ; L TESTI; J HIDALGO; M PASTOR & F ORGAZ. 2006. Modelling potential growth and yield of olive (Olea europaea L.) canopies. Eur. J. Agron. 24:296-303.

WILLIAMS, DG; W CABLE; K HULTINE; JCB HOEDJES; EA YEPEZ; ET AL. 2004. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric. For. Meteorol. 125:241-258.

YUNUSA, IAM; IK NUBERG; S FUENTES; P LU & D EAMUS. 2008. A simple field validation of daily transpiration derived from sapflow using a porometer and minimal meteorological data. Plant Soil 305:15-24.

Published

2011-04-01

How to Cite

Searles, P. S., Agüero Alcarás, M., & Rousseaux, M. C. (2011). Water use by olive orchards (Olea europaea L.) in the Northwest of Argentina: a comparison with the Mediterranean Basin. Ecología Austral, 21(1), 015–028. Retrieved from https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1293