Plant architecture and gall diversity associated with Copaifera langsdorffii (Fabaceae)

Authors

  • Fernanda Vieira da Costa Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Montes Claros, Departamento de Biologia Geral, Laboratório de Biologia da Conservação, Montes Claros, Minas Gerais, Brasil
  • Marcílio Fagundes Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Montes Claros, Departamento de Biologia Geral, Laboratório de Biologia da Conservação, Montes Claros, Minas Gerais, Brasil
  • Frederico de Siqueira Neves Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Montes Claros, Departamento de Biologia Geral, Laboratório de Biologia da Conservação, Montes Claros, Minas Gerais, Brasil

Keywords:

architectural complexity, gall inducing insects, tropical tree, sampling effort, super-host

Abstract

Plant architecture and gall diversity associated with Copaifera langsdorffii (Fabaceae). Galling insects induce tumors on their host plants in response to climatic adversities and as a protection against natural enemies. Among several hypotheses that explain differences in the distribution and abundance of galling-inducing insects, the plant architecture hypothesis stresses the influence of host plant architecture (e.g., a combination of life form, plant height, and number of shoots, branches and leaves in relation to crown volume). The aims of this study was to evaluate the effects of host plant architecture on gall species diversity and to determine the sample effort to perform a representative collect of the galling insects fauna. On fifty C. langsdorffii trees, we determined both architectural variables (i.e. height, DBH, number of ramifications of the first, second and third level, and crown area and plant volume) and gall richness and abundance. We found a total of 23 gall morphotypes associated with host plant C. langsdorffii. The gall richness and abundance were not affected by host plant architecture. Rarefaction curves indicated that ten individuals and 14 shoots per plant are sufficient to sample all gall morphotypes associated with C. langsdorffii. The study suggest a new methodology to sampling galls in this tropical tree species.

References

ALMEIDA, SP; CBE PROENÇA; SM SANO & JF RIBEIRO. 1998. Cerrado: espécies vegetais úteis. Planaltina: Embrapa. 464 pp.

ALONSO, C & CM HERRERA. 1996. Variation in herbivory within and among plants of Daphne laureola (Thymelaeaceae): correlation with plant size and architecture. J. Ecol., 84:495-502.

BLANCHE, KR & M WESTOBY. 1996. The effect of the taxon and geographic rande size of host eucalypt species on the species richness of gall-forming insects. Aust. J. Ecol., 21:332-335.

CARNEIRO, MAA; GW FERNANDES & OFF DE SOUZA. 2005. Convergence in the Variation of Local and Regional Galling Species Richness. Neot. Entomol., 34:547-554.

CRAWLEY, M. 2002. Statistical computing: An introduction to data analysis using S-Plus. John Wiley & Sons Inc., Baffins Lane. 761 pp.

CUEVAS-REYES, P; M QUESADA; P HANSON; R DIRZO & K OYAMA. 2004a. Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life-forms, host plant age and plant density. J. Ecol., 92:707-716.

CUEVAS-REYES, P; M QUESADA; C SIEBE & K OYAMA. 2004b. Spatial patterns of herbivory by gall-forming insects: A test of the soil fertility hypothesis in a Mexican tropical dry forest. Oikos, 107:181-189.

DWYER, JD. 1951. The Central American, West Indian and South American Species of Copaifera (Caesalpiniaceae). Brittonia, 7:143-172.

ESPÍRITO-SANTO, MM; FS NEVES; FR ANDRADE- NETO & GW FERNANDES. 2007. Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia, 153:353-364.

FAGUNDES, M & CL GONÇALVES. 2005. Ataque de um inseto galhador (Díptera: Cecidomyiidae) em Astronium fraxinifolium (Anacardiaceae) em uma floresta estacional. Unimontes Científica, 7:107-114.

FAGUNDES, M; FS NEVES & GW FERNANDES. 2005. Direct and indirect interactions involving ants, insect hetbivores, parasoitoids, and the host plant Baccharis dracunculifolia (Asteraceae). Ecol. Entomol., 30:28-35.

FELT, EP. 1940. Plant galls and gall makers. Comstock, Ithaca, New York. 364 pp.

FERNANDES, GW & RP MARTINS. 1985. Tumores de plantas: as galhas. Ciência Hoje, 4:58-64.

FERNANDES, GW & PW PRICE. 1988. Biographical gradients in galling species richness: Test of hypotheses. Oecologia, 76:161-167.

FERNANDES, GW & PW PRICE. 1991. Comparisons of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status. En: Price, PW; TM Lewinsohn & WW Benson (eds.). Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, 639 pp.

FERNANDES, GW & PW PRICE. 1992. The adaptative significance of insect gall distribution: survivorship of species in xeric and mesic habitat. Oecologia, 90:14-20.

FERNANDES, GW. 1994. Plant mechanical defenses aganist insect herbivory. Rev. Bras. Entomol., 38: 421-433.

FERNANDES, GW; MAA CARNEIRO; ACF LARA; LR ALLAIN; GI ANDRADE; ET AL. 1996. Galling species on neotropical species of Baccharis (Asteraceae). Trop. Zool., 9:315-332.

FERRAZ, FF & RF MONTEIRO. 2003. Complex interaction envolving a gall midge Myrciamia maricaensis Maia (Díptegonlra, Cecidomyiidae), phytophagous modifiers and parasitoids. Rev. Bras. Zool., 3:433-437.

FLAHERTY, L & D QUIRING. 2008. Plant module size and dose of gall induction stimulus influence gall induction and galler performance. Oikos, 117:1601-1608.

FLECK, T & CR FONSECA. 2007. Hipóteses sobre a riqueza de insetos galhadores: uma revisão considerando os níveis intra-específico, interespecífico e de comunidade. Net. Biol. Conservation, 2:36-45.

GONÇALVES-ALVIN, SJ; EC LANDAU; M FAGUNDES; VG SILVA; YRF NUNES; ET AL. 1999. Abundance and Impacto f a Lepidopteran Gall on Macairea radula (Melastomataceae) in The Neotropics. Int. J. Ecol. Environ. Sci., 25:115-125.

HAWKINS, BA & RD GOEDEN. 1984. Organization of a parasitoid community associated with a complex of galls on Atriplex spp. in southern California. Ecol. Entomol., 9:271-92.

LARA, DP; LA OLIVEIRA; IFP AZEVEDO; MF XAVIER; FAO SILVEIRA; ET AL. 2008. Relationships between host plant architecture and gall abundance and survival. Rev. Bras. Entomol., 52:78-81.

LARSON, KC & TG WHITHAM. 1997. Competition between gall aphids and natural plant sinks: plant architecture affects resistance to galling. Oecologia, 109:575-582.

LAWTON, JH. 1983. Plant architecture and the diversity of phytophagous insect. Annu. Rev. Entomol., 28:23-39.

MANI, MS. 1964. Ecology of Plant Galls. Junk, The Hague. 343 pp.

MARQUIS, RJ; JT LILL & A PICCINNI. 2002. Effect of plant architecture on colonization and damage by leaftying caterpillars of Quercus Alba. Oikos, 99:531-537.

MEDIANERO, E; A VALDERRAMA & H BARRIOS. 2003. Diversidad de insectos minadores de hojas y formadores de agallas en el dosel y sotobosque del bosque tropical. Acta Zoolog. Mexic., 89:153-168.

MENDONÇA, MS. 2001. Galling insect diversity patterns: the resource synchronization hypothesis. Oikos, 95:171-176.

PEDRONI, F; M SANCHEZ & AM SANTOS. 2002. Fenologia da copaíba (Copaifera Langsdorffii Desf. - Leguminosae, Caesalpinioideae) em uma floresta semidecídua no sudeste do Brasil. Rev. Bras. Bot., 25:183-194.

PRICE, PW; GL WARING & GW FERNANDES. 1986. Hypotheses on the adaptative nature of galls. Proc. Entomol. Soc. Wash., 88:361-363.

PRICE, PW. 1991. The plant vigor hypothesis and herbivore attack. Oikos, 62:244-251.

PRICE, PW; GW FERNANDES; ACF LARA; J BRAWN; H BARRIOS; ET AL. 1998. Global patterns in local number of insect galling species. J. Biogeogr., 25:581-591.

RIBEIRO, SP & Y BASSET. 2007. Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: the importance of leaf sclerophylly. Ecography, 30:663-672.

RIZZINI, CT. 1997. Tratado de fitogeografia do Brasil: aspectos ecológicos, sociológicos e florísticos. Rio de Janeiro: Âmbito Cultural. 747 pp.

SANTOS, RM; FA VIEIRA; M FAGUNDES; YRF NUNES & E GUSMÃO. 2007. Riqueza e similaridade florística de oito remanescentes florestais no norte de Minas Gerais. Rev. Árvore, 31:135-144.

SILVA-JÚNIOR, MC. 2005. 100 Árvores do Cerrado: guia de campo. Brasília: Rede se Sementes do Cerrado. 278 pp.

SOUTHWOOD, TRE. 1961. The number of insect associated with various trees. J. Anim. Ecol., 30: 1-8.

SOUZA, VC & H LORENZI. 2005. Botânica Sistemática. São Paulo: Instituto Plantarum. 639 pp. STONE, GN & K SCHÖNROGGE. 2003. The adaptive significance of insect gall morphology. Trends Ecol. Evol., 18:512−522.

VELDTMAN, R & MA MCGEOCH. 2003. Gall-forming insects species richness along a non scleromorphic vegetaion rainfall gradient in South Africa: The importance of plant community composition. Austral Ecol., 28:1-13.

WARING, GL & PW PRICE. 1989. Parasitoid pressure and the radiation of a gall forming group (Cecidomyiidae: Asphondylia spp.) on creosote bush (Larrea tridentata). Oecologia, 79:293-9.

WOODCOCK, BA; SG POTTS; DB WESTBURY; AJ RAMSAY; M LAMBERT; ET AL. 2007. The importance of sward architectural complexity in structuring predatory and phytophagous invertebrate assemblages. Ecol. Entomol., 32:302-311.

Published

2010-04-01

How to Cite

Vieira da Costa, F., Fagundes, M., & de Siqueira Neves, F. (2010). Plant architecture and gall diversity associated with Copaifera langsdorffii (Fabaceae). Ecología Austral, 20(1), 009–017. Retrieved from https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1322