Carrying capacity of animal production systems: theoretical framework and practical applications

Authors

  • Rodolfo Golluscio IFEVA, CONICET, Cátedra de Forrajicultura, Facultad de Agronomía, Univ. de Buenos Aires, Argentina.

Keywords:

sustainable use, energy flux, population dynamics, grazing, harvest index

Abstract

This article is conceived as a didactic aid to use in graduate and post-graduate courses of Ecology and Grassland Science. It aims to illustrate the concept of carrying capacity when applied to animal production systems, and also the difficulties involved in its calculus. The concept of carrying capacity derives from the classical logistic model of population growth, and is defined as the maximum density a population can attain in one habitat. However, that model assumes that (1) the environment is invariable in time and space, (2) all the individuals of the population use the resources with the same efficiency, and (3) the population has not competitors, depredators or parasites. Taking into account that these three assumptions are not fulfilled in animal production systems, and that human intervention alters ecosystem carrying capacity, the concept of carrying capacity of animal production systems differs from that of the logistic model. The carrying capacity of animal production systems has been defined as “the maximum animal density that can be maintained in one area under a certain production level without deteriorate the resource”. The most adequate conceptual framework to understand the factors determining the carrying capacity of animal production systems is the model of energy flux. It suggests that domestic herbivores may consume only a proportion of Aboveground Net Primary Production, known as Harvest Index, to make a sustainable use of rangeland ecosystems. There not exist, until now, an universally accepted methodology to estimate the carrying capacity of animal production systems because of: (1) the lack of reliable models to predict Harvest Index in sites differing in environmental conditions or vegetation structure, or in different years or seasons, (2) the vast array of factors determining carrying capacity, including those directly linked to forage availability (as precipitation, fertility, soil texture, etc.) as good as those environmental factors unlinked to forage availability (as water availability, climatic risks, predators, etc.) and those factors linked to range management (as grazing system), and (3) the interactions among these factors and the producer decisions, which reflect the objectives the producer fix to its business and the levels of economic risk he assumes. As a consequence, when defining the carrying capacity of an animal production system, several precautions must be taken: a careful selection of the best method for each objective and region, a conservative attitude, a continuous monitoring of the status of vegetation and individual animal production parameters (no calculus negatively affecting any of those parameters can be considered as sustainable), and a flexible attitude allowing to modify the stocking density in order to promote regenerative processes or prevent transitions to more degraded states.

References

ARC (AGRICULTURAL RESEARCH COUNCIL). 1980. The nutrient requirement of ruminant livestock. Farntrun Royal: Commonwealth Agricultural Bureaux.

BAILEY, DW; JE GROSS; EA LACA; LR RITTENHOUSE, MB COUGHENOUR; ET AL. 1996. Mechanisms that result in large herbivore grazing distribution patterns. J. Range Manage. 49:386-400.

BEGON, M; JL HARPER & CR TOWNSEND. 1988. Ecología. Ediciones Omega, Barcelona.

BOELCKE, O; D MOORE & F ROIG. 1985. Transecta botánica de la Patagonia Austral. CONICET (Argentina), Royal Society (Great Britain), e Instituto de la Patagonia (Chile). Buenos Aires (Argentina). Pp. 733.

BONVISSUTO, G Y R SOMLO. 1998. Guía de condición para los campos naturales de "Precodillera” y “Sierras y Mesetas” de Patagonia. Prodesar-EEA INTA Bariloche

BONVISSUTO, G & M LANCIOTTI. 2002. Guía de condición para los mallines con pasto salado (Distichlis spp.) en zonas de Río Negro con menos de 300 mm de precipitaciones anuales. PAN-EEA INTA Bariloche.

BORRELLI, P; C CHEPPI; M IACOMINI & A RAMSTROM. 1984. Condición de pastizales en el sitio Terrazas del Río Gallegos. Revista Argentina de Producción Animal 9:879-897.

BORELLI, P; F ANGLESIO; CA BAETTI; MH IACOMINI & A RAMSTROM. 1988. Condición de pastizales en el Sudeste de Santa Cruz (Patagonia) II: Sitio Santacrucense. Revista Argentina de Producción Animal 8:201-213.

BORRELLI, P; C BAETTI; C CHEPPI & M IACOMINI. 1990. Una metodología para evaluar los Pastizales de Santa Cruz, Revista Argentina de Producción Animal. Suplemento I:8, Actas XV Reunión de AAPA (Huerta Grande, Córdoba), INTA Río Gallegos 1980.

BOTTARO, H; V NAKAMATSU; W OPAZO; G CIARI & M VILLA. 2007. Guía de condición para estepas arbustivo- graminosas de cola de piche (Nassauvia glomerulosa) y coirón poa (Poa ligularis) utilizadas con ovinos y caprinos. EEA INTA Esquel.

BOTTARO, H; MVILLA; R GOLLUSCIO; W OPAZO & V NAKAMATSU. 2008. Pautas de manejo y guía de condición para estepas graminoso-arbustivas de coirones blanco (Festuca pallescens) y duro (Stipa speciosa var speciosa) y neneo (Mulinum spinosum) utilizadas con ovinos y bovinos. EEA INTA Esquel.

CIBILS, A. 1993. Manejo de pastizales. En Cambio Rural-INTA EEA Santa Cruz (eds.) Catálogo de Prácticas. Tecnología disponible. INTA. Río Gallegos, Santa Cruz.

DEREGIBUS, VA & M GARBULSKY. 2001.Capacidad de carga de los recursos forrajeros. Guía de Lectura de Utilización de Forrajes, Facultad de Agronomía UBA.

ELLIS, JE & DM SWIFT. 1988. Stability of African pastoral ecosystems: Alternate paradigms and implications for development. J. Range Manage. 41:450-459.

GOLLUSCIO, R; VA DEREGIBUS & JM PARUELO. 1998. Sustainability and range management in the Patagonian steppes. Ecol. Austral 8:265-284.

GOLLUSCIO, RA; HS BOTTARO; D RODANO; M GARBULSKY; S BOBADILLA; ET AL. 2009. Divergencias en la estimación de receptividad ganadera en el noroeste de la Patagonia: diferencias conceptuales y consecuencias prácticas. Ecol. Austral 19:3-18.

GRIGERA, G; M OESTERHELD & F PACÍN. 2007. Monitoring forage production for farmers decision making. Agr. Syst. 94:637-648.

GUEVARA, JC; OR ESTÉVEZ & ER TORRES. 1996. Utilization of the rain-use-efficency factor for determining potential; cattle production in the mendoza plain, Argentina. J. Arid Env. 33:347-353.

HOLECHEK, J; R PIEPER & C HERBEL. 1989. Range Management: principles and practices. Prentice Hall. Pp. 501.

HUXMAN, T; M SMITH; P FAY; A KNAPP; M SHAW; ET AL. 2004 Convergence across biomes to a common rain-use efficiency. Nature 429:651-654.

ILLIUS, AW & TG O’CONNOR. 1999. On the relevance of nonequilibrium concepts to arid and semiarid grazing systems. Ecol. Appl. 9:798-813.

LAUENROTH, WK & OE SALA. 1992. Long-term forage production of North American Shortgrass Steppe. Ecol. Appl. 2:397-403.

MCNAUGHTON, SJ; M OESTERHELD; DA FRANK & KJ WILLIAMS. 1989. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142-144.

MCNAUGHTON, SJ; OE SALA & M OESTERHELD. 1993. Comparative ecology of African and South American arid to subhumid ecosystems. Pp. 548- 567 en Goldblatt, P (ed.) Biological relationships between Africa and South America. Yale University Press. New Haven.

MILCHUNAS, DG; OE SALA & WK LAUENROTH. 1988. A generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 132:87-106.

MILCHUNAS, DG & WK LAUENROTH. 1993. Quantitative Effects of Grazing on Vegetation and Soils over a Global Range of Environments. Ecol. Monogr. 63(4):327-366.

MINISTERIO DE ECONOMÍA. 1974. Empadronamiento Nacional Agropecuario y Censo Ganadero (Buenos Aires, Argentina).

MINISTERIO DE AGRICULTURA Y PESCA. 1980. Censo General Agropecuario. Montevideo, Uruguay.

MONTEITH, JL. 1972. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 9:747-66.

NAKAMATSU, V; JM ESCOBAR & N ELISSALDE. 2001. Evaluación forrajera de pastizales naturales de estepa en establecimientos ganaderos de la Provincia de Chubut (Patagonia, Argentina): Resultados de 10 años de trabajo. En: Resúmenes del Taller de actualización sobre métodos de evaluación, monitoreo y recuperación de pastizales naturales patagónicos. FAO-INTA- INIA, Esquel.

ODUM, EP. 1972. Ecología. Nueva Editorial Interamericana. Tercera Edición. Pp. 639.

OESTERHELD, M; OE SALA & SJ MCNAUGHTON. 1992. Effect of animal husbandry on herbivore-carrying capacity at a regional scale. Nature 356:234-236.

OESTERHELD, M; J LORETI; M SEMMARTIN & JM PARUELO. 1999. Grazing, fire, and climate effects on primary productivity of grasslands and savannas. Pp. 287- 306 en Walker, LR (ed.) Ecosystems of disturbed ground. Elsevier, Amsterdam.

PARUELO, JM & WK LAUENROTH. 1998. Interannual variability of NDVI and their relationship to climate for North American shrublands and grasslands. J. Biogeogr. 25:721-733.

PARUELO, J; WK LAUENROTH; I BURKE & OE SALA. 1999. Grassland precipitation-use efficiency varies across a resource gradient. Ecosystems 2:64-68.

PARUELO, JM; RA GOLLUSCIO; JP GUERSCHMAN; A CESA; VV JOUVE; ET AL. 2004. Regional scale relationships between ecosystem structure and functioning: the case of the Patagonian steppes. Glob. Ecol. Biogeogr. 13:385-395.

PARUELO, JM; M OESTERHELD; C DI BELLA; M ARZADUM; J LAFONTAINE; ET AL. 2000. Estimation of primary production of subhumid rangeland from remote sensing data. Appl. Veg. Sci. 3:189-195.

PIÑEIRO, G; M OESTERHELD & JM PARUELO. 2006. Seasonal variation in aboveground production and radiation-use efficiency of temperate rangelands estimated through remote sensing. Ecosystems 9:357-373.

RODANO, D. 2004. Estimación de la receptividad ovina combinando información satelital y florística en la Patagonia. Trabajo de Intensificación para obtener el título de Ingeniero Agrónomo Facultad de Agronomía (UBA). Director: Golluscio, R.

SALA, OE; J PARTON; L JOYCE & WK LAUENROTH. 1988. Primary Production of the Central Grassland Region of the United States. Ecology 69(1):40-45.

SALA, OE & AT AUSTIN. 2000. Methods of Estimating Aboveground Net Primary Productivity. Pp. 31- 43 en: Sala, OE; RB Jackson; H Mooney & RH Howarth (eds.) Methods in Ecosystem Science. Springer, New York.

SCARNECCHIA, DL. 1990. Concepts of carrying capacity and substitution ratios: a systems viewpoint. J. Range Manage. 43:553-555.

SENFT, RL; MB COUGHENOUR; DW BAILEY; LR RITTENHOUSE; OE SALA; ET AL. 1987. Large herbivore foraging and ecological hierarchies. BioScience 37:789-799.

SIFFREDI, G; C LÓPEZ; J AYERZA; P QUIROGA & J GAITÁN. 2005. Guía de recomendación de carga animal para Estepas de la región de Los Menucos, Río Negro. Proinder-EEA INTA Bariloche.

SIFFREDI, G; C LÓPEZ; J AYERZA; P QUIROGA & J GAITÁN. 2005. Guía de recomendación de carga animal para Estepas de la región de Sierra Colorada, Río Negro.
Proinder-EEA INTA Bariloche.

SIFFREDI, G; J GAITÁN; C LÓPEZ & J AYERZA. 2005. Guía de recomendación de carga animal para mallines. Ley Ovina-PAN-EEA INTA Bariloche.

VECCHIO, MC; RA GOLLUSCIO & MI CORDERO. 2008. Cálculo de la receptividad a escala de potrero en pastizales de la Pampa Deprimida. Ecol. Austral 18:213-222.

VERHULST, PF. 1838. Notice sur la loi que la population suit dans accroissement. Correspondence Mathématique et Physique 10:113-121.

WERNLI, C. 1988. La nutrición del ovino y bovino y características de los recursos pastoriles en Magallanes. Pp. 110-132 en Actas del VII Seminario Agropecuario en la Patagonia (Punta Arenas, Chile).

WESTOBY, M; B WALKER & I NOY MEIR. 1989. Opportunistic management for rangelands not at equilibrium. J. Range Manage. 42:266-274.

Published

2009-12-01

How to Cite

Golluscio, R. (2009). Carrying capacity of animal production systems: theoretical framework and practical applications. Ecología Austral, 19(3), 215–232. Retrieved from https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1334