Macronutrient cycling in mountain grasslands of Sierra de la Ventana, Argentina

Authors

  • Carolina A. Pérez Lab. de Investigación de Sistemas Ecológicos y Ambientales (LISEA), Univ. Nac. de La Plata, La Plata, Argentina.
  • Jorge L. Frangi Lab. de Investigación de Sistemas Ecológicos y Ambientales (LISEA), Univ. Nac. de La Plata, La Plata, Argentina.

Keywords:

altitudinal gradient, calcium, magnesium, nitrogen, phosphorus, potassium, stocks

Abstract

Macronutrient cycling was assessed in mountain grassland sites located on a NE slope at 550, 850 and 1025 m asl, in Sierra de la Ventana, Buenos Aires, Argentina. Previous studies showed ecosystem changes with elevation increase: 1) temperature decreased, 2) evaporation increased, 3) clay and base content of soils decreased, 4) net primary productivity (NPP) did not change significantly, 5) the below-above-ground biomass ratio increased and, 6) NPP allocation to aboveground tissues diminished and to belowground tissues increased. The objective was to establish if similar NPP along the environmental gradient is attained through changes in nutrient allocation and cycling pathways resulting in nutrient use efficiency (NUE) changes. Plant biomass and necromass were harvested during one year and separated in compartments. Plant and soil samples were analyzed for N, P, K, Ca and Mg. Mineral mass was calculated as the product of nutrient concentration per dry mass. Nutrient fluxes and NUE were calculated. Aboveground live tissues had the highest concentration, Ca excepted. With elevation increase we noted that: i) the concentration of P, K and Mg in green grasses decreased, ii) the mineral proportion stocked in roots incremented, iii) requirements decreased in the range (kg ha-1 y-1) 120 - 107 N, 9 - 6 P, 84 - 44 K, 41 - 34 Ca and 12 - 9 Mg; and iv) Nitrogen, P and K resorption decreased its absolute and percent contribution to requirements. Except for K, absorption was the main pathway contributing to N, P, Ca and Mg requirements. The OM and mineral return input to soil was due mainly to root senescence (55 to 92% of total return, depending on nutrient and site), except for K whose main return was via litter fall. At leaf level, there were not differences in nutrient resorption among sites; the resorption ranges were 70-80 % K, 57-68% P and 42-48% N. Nitrogen resorption proficiency was high and P resorption proficiency was complete. Foliar N:P ratio (=11 to 18) suggested P-limitation at intermediate and upper sites. The Gray’s relative turnover rate indicated P-conservative behavior suggesting P was limiting also at the lower site. Nutrients circulated slower than biomass. With the exception of N, NUE was higher at higher elevation. Apparently, N was not limiting in any site. A comparison of grasslands sites located at both environmental - elevation gradient extremes showed that: 1) the grassland in more favourable environment invested more in ANPP, resulting in higher macronutrient requirements; this grassland had high turnover rates (except for K), the NPP was less-dependent on external –absorption- supply and had a more conservative relative circulation of K and P; 2) the grassland in less favourable environment was more P, K, Ca and Mg nutrient- use efficient (higher dry matter production per absorbed nutrient unit), due to higher residence time and a higher biomass and productivity allocation to roots. We concluded that similar NPP in different environments was attained through combined changes in two strategic components involved in nutrient acquisition and use: 1) Carbon fractions allocated to above- and below- ground net productivity and biomass, and 2) Nutrient concentration, total-, above- and below- ground mineralmass, requirements and nutrient supply pathways, and mineral turnover rates, that change NUE. Changes are nutrient specific and may be evidence of soil nutrient availability and limitation with regard to demand.

References

AERTS, R. 1995. The advantages of being evergreen. Trends Ecol. Evol., 10:402-407.

AERTS, R. 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns? J. Ecol., 84:597-608.

AERTS, R & F BERENDSE. 1989. Above-ground nutrient turnover and net primary production of an evergreen and a deciduous species in a heathland ecosystem. J. Ecol., 77:343-356.

AERTS, R & FS CHAPIN III. 2000. The mineral nutrition of wild plant revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res., 30:1-67.

AERTS, R & MJ VAN DER PEIJL. 1993. A simple model to explain the dominance of low-productive perennials in nutrient-poor habitats. Oikos, 66: 144-147.

BARRERA, MD & JL FRANGI. 1994. Estructura de la biomasa de pastizales en Sierra de la Ventana (Buenos Aires, Argentina). Revista del Museo de La Plata (NS), 14:243-262.

BERENDSE, F; H OUDHOF & J BOL. 1987. A comparative study on nutrient cycling in wet heathland ecosystems. I. Litter production and nutrient losses from the plant. Oecol., 74:174-184.

BERTILLER, MB; CL SAIN; AL CARRERA & DN VARGAS. 2005. Patterns of nitrogen and phosphorus conservation in dominant perennial grasses and shrubs across an aridity gradient in Patagonia, Argentina. J. Arid Environ., 62:209-223.

BLACK, RA; J RICHARDS & JH MANWARING. 1994. Nutrient uptake from enriched soil microsites by three Great Basin perennials. Ecol., 75:110-122.

BREVEDAN, RE; CA BUSSO; T MONTANI & OA FERNÁNDEZ. 1996. Production and nitrogen cycling in an ecosystem of Eragrostis curvula in semiarid Argentina. II. Nitrogen content and transfers. Acta Oecol., 17:211-223.

BURGOS, JJ & A VIDAL. 1951. Los climas de la República Argentina, según la nueva clasificación de C.W.Thornthwaite. Meteoros, 1:3-32.

CABRERA, AL. 1963-1970. Flora de la Provincia de Buenos Aires. Colección Científica del INTA, Buenos Aires. Argentina.

CARRERA, AL; MB BERTILLER; CL SAIN & MJ MAZZARINO. 2003. Relationship between plant nitrogen conservation strategies and the dynamics of soil nitrogen in the arid Patagonian Monte, Argentina. Plant Soil, 255:595-604.

CARRERA, AL; CL SAIN & MB BERTILLER. 2000. Patterns of nitrogen conservation in shrubs and grasses in the Patagonian Monte, Argentina. Plant Soil, 224:185-193.

CHANETON, EJ; JH LEMCOFF & RS LAVADO. 1996. Nitrogen and phosphorus cycling in grazed and ungrazed plots in a temperate subhumid grassland in Argentina. J. Appl. Ecol., 33:291-302.

CHAPIN, FS III. 1980. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst., 11:233-260.

CHAPIN, FS III; J FOLLETT & KF O’CONNOR. 1982. Growth, phosphate absorption, and phosphorus chemical fractions in two Chionochloa species. J. Ecol., 70:305-321.

CHAPMAN, HD & PF PRATT. 1979. Métodos de análisis para suelos, plantas y aguas. Ed. Trillas. México.

CLARK, FE. 1977. Internal cycling of 15N in shortgrass prairie. Ecology, 58:1322-1333.

CLARK, FE & RG WOODMANSEE. 1992. Nutrient cycling. Pp. 137-146 in: RT Coupland (ed.). Natural grasslands: Introduction and western hemisphere. Ecosystems of the world 8A. Elsevier, NY., USA.

COLE, DW & M RAPP. 1981. Elemental cycling in forest ecosystems. Pp. 341-401 in: CE Reichle (ed.). Dynamic Properties of Forest Ecosystems. Cambridge University Press. Cambridge,UK.

DISTEL, RA & OA FERNÁNDEZ. 1986. Productivity of Stipa tenuis and Piptochaetium napostaense (Speg.) Hack in semiarid Argentina. J. Arid Env., 11:93-96.

DISTEL, RA; AS MORETTO & NG DIDONÉ. 2003. Nutrient resorption from senescing leaves in two Stipa species native to central Argentina. Austral Ecology, 28:210-215.

FRANGI, JL & O BOTTINO. 1995. Las comunidades vegetales de la Sierra de la Ventana, Provincia de Buenos Aires, Argentina. Revista de la Facultad Agronomía, La Plata, 71:93-133.

FRANGI, JL; MG RONCO; NE SÁNCHEZ; G ROVETTA & R VICARI. 1980a. Efecto del fuego sobre la composición y dinámica de la biomasa de un pastizal de Sierra de la Ventana (Buenos Aires, Argentina). Darwiniana, 22:565-585.

FRANGI, JL; NE SÁNCHEZ; MG RONCO; G ROVETTA & R VICARI. 1980b. Dinámica de la biomasa y productividad primaria aérea neta de un pastizal de “flechillas” de Sierra de la Ventana (Buenos Aires, Argentina). Boletín de la Sociedad Argentina de Botánica, 19:203-228.

GRAY, JT. 1983. Nutrient use by evergreen and deciduous shrubs in southern California. J. Ecol., 71:21-41.

GRUBB, PJ. 1989. Minerals nutrients: a plant ecologist’ view. Pp. 416-439 in: J Proctor (ed.). Mineral nutrients in tropical forest and savanna ecosystems. Blackwell Scientific Publications. Oxford, UK.

HURLBERT, SH. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr., 54:187-211.

INGESTAD, T & GI ÅGREN. 1988. Nutrient uptake and allocation at steady state nutrition. Physiol. Plant., 72:450-459.

JONES, MB & RG WOODMANSEE. 1979. Biogeochemical cycling in annual grassland ecosystems. Bot. Rev., 45:111-114.

KILLINGBECK, K.1996. Nutrients in senesced leaves: Key to the search for potential resorption and resorption proficiency. Ecology, 77:1716-1727.

KOERSELMAN, W & AFM MEULEMAN. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol., 33: 1441-1450.

KRISTENSEN, MJ & JL FRANGI. 1995. Mesoclimas de pastizales de la Sierra de la Ventana. Ecol. Austral, 5:55-64.

LAMBERS, H; FS CHAPIN III & TL PONS. 1998. Plant physiological ecology. Springer-Verlag, NY.

LAMBERS, H & H POORTERS. 1992. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res., 22:187-261.

LUH HUANG, CY & EE SCHULTE. 1985. Digestion of plant tissue for analysis by ICP Emission Spectroscopy. Commun. in Soil Sci. Plant Anal., 16:943-958.

MAZZARINO, MJ; M BERTILLER; T SCHLICHTER & M GOBBI. 1998. Nutrient cycling in Patagonian ecosystems. Ecol. Austral, 8:167-181.

MONTANI, T; SE DELMASTRO & OA FERNÁNDEZ. 1989. Biomasa radical y la dinámica de su crecimiento en Eragrostis curvula (Schrad.) Ness. Stvdia (Ecologica), 6:79-96.

OADES, JM. 1988. The retention of organic matter in soils. Biogeochemistry, 5:35-70.

PÉREZ, CA. 1996. Productividad en pastizales serranos a lo largo del gradiente altitudinal. Tesis doctoral, Universidad Nacional de La Plata. Argentina.

PÉREZ, CA & JL FRANGI. 2000. Grassland biomass dynamics along an altitudinal gradient in the Argentine Pampas. J. Range Manage., 53:518-528.

SALA, OE; VA DEREGIBUS; T SCHLICHTER & H ALIPPE. 1981. Productivity dynamics of a native temperate grassland in Argentina. J. Range Manage., 34:48-51.

SCHLÄPFER, B & P RYSER. 1996. Leaf and root turnover of three ecologically contrasting grass species in relation to their performance along a productivity gradient. Oikos, 75:398-406.

SEMMARTIN, M; MR AGUIAR; RA DISTEL; AS MORETTO & CM GHERSA. 2004. Litter quality and nutrient cycling affected by grazing-induced species replacements along a precipitation gradient. Oikos, 107:148-160.

SOKAL, RR & FJ ROHLF. 1979. Biometría. Ed. Blume. Madrid. España.

SORIANO, A. 1992. Río de la Plata grasslands. Pp. 367-407 in: RT Coupland (ed.). Natural grasslands: Introduction and western hemisphere. Ecosystems of the world 8A. Elsevier. NY., USA.

VAN DER WERF, A & OW NAGEL. 1996. Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: opinion. Plant Soil, 185:21-31.

VERHOEVEN, JTA; W KOERSELMAN & AFM MEULEMAN. 1996. Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Tree, 11: 494-497.

Published

2007-12-01

How to Cite

Pérez, C. A., & Frangi, J. L. (2007). Macronutrient cycling in mountain grasslands of Sierra de la Ventana, Argentina. Ecología Austral, 17(2), 199–216. Retrieved from https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1407

Issue

Section

Articles