Indirect vegetation mapping in topographically complex areas: the case of Sierra de la Ventana, province of Buenos Aires

Authors

  • José M. Lizzi Cátedra de Forrajicultura. Facultad de Agronomía. Univ. de Buenos Aires. Ciudad de Buenos Aires. Argentina.
  • Martín F. Garbulsky Cátedra de Forrajicultura. Facultad de Agronomía. Univ. de Buenos Aires. Ciudad de Buenos Aires. Argentina.
  • Rodolfo A. Golluscio Cátedra de Forrajicultura. Facultad de Agronomía. Univ. de Buenos Aires. Ciudad de Buenos Aires. Argentina.
  • Alejandro V. Deregibus Cátedra de Forrajicultura. Facultad de Agronomía. Univ. de Buenos Aires. Ciudad de Buenos Aires. Argentina.

Keywords:

hill’s grasslands, vegetation units, ecologic niche, DEM, GIS

Abstract

The cartography of the vegetation increases the understanding of the extension and spatial distribution of different communities and has become an important tool for planning strategies for both conservation and use. Remnant grasslands in Buenos Aires province have been well-studied, though the vegetation of Sierra de la Ventana has yet to be mapped at a level of detail appropriate to its spatial heterogeneity. One reason for this, is that conventional photo interpretation or image classification techniques are less suitable for making good vegetation maps of areas with complex topography. In this study we used techniques of predictive vegetation mapping at a regional scale and applied it to the natural vegetation of Sierra de la Ventana, a hill system located in southwestern Buenos Aires with a large part devoted to agriculture and livestock grazing. The technique presented in this paper combines remote sensed data (Landsat TM7) and a digital elevation model at a regional scale, with a previous study that related the most conspicuous plant communities in the region with topography at a more detailed scale. We constructed an algorithm to assign each pixel to the corresponding Vegetation Unit (VU) that uses the geo-edaphic environment and topographic variables as input variables. The sixteen VU identified using the digital data (spatial resolution = 90 m) showed a high correlation with the VU identified in the field (r = 0.88, n = 100 ground control points). The technique developed in this study represents an advance on vegetation mapping and could be extrapolated to other hilly areas that already have a basic vegetation description. Our results provide new knowledge on the spatial heterogeneity of this area. The map of natural vegetation is a useful resource for improving grazing management. Some of the differences between field data from the foothill sites and the derived map may arise from the impacts of grazing. Our results could help to generate hypotheses on the causes of differences between the actual and the original vegetation. We found that all the VU were included inside the limits of the only protected area in the region, however the most extensive VU in the region are the less represented inside the protected area.

References

AGUILERA, MO; DF STEINAKER; MR DEMARÍA & OA AVILA. 1998. Estados y transiciones de los pastizales de Sorghastrum pellitum del área medanosa central de San Luis, Argentina. Ecotrópicos (Caracas), 11:107-120.

APN (ADMINISTRACIÓN DE PARQUES NACIONALES). 1998. Las áreas naturales protegidas de la Argentina. Administración de Parques Nacionales. Buenos Aires, Argentina.

BARRERA, MD & JL FRANGI. 1997. Modelo de estados y transiciones de la arbustificación de pastizales de Sierra de la Ventana, Argentina. Ecotrópicos (Caracas), 10:161-166.

BATISTA, WB; RJC LEÓN & SB PERELMAN. 1988. Las unidades vegetales de un pastizal natural de la región de Laprida, Prov. de Buenos Aires, Argentina. Phytocoenologia, 16:519-534.

BRAUN BLANQUET, J. 1950. Sociología Vegetal. Estudio de las unidades vegetales. Acme Agency. Buenos Aires, Argentina.

BURKART, SE; MF GARBULSKY; CM GHERSA; JP GUERSCHMAN; RJC LEÓN ET AL. (EX AEQUO). 2005. Las comunidades potenciales del pastizal pampeano bonaerense. Pp. 379-400 en: M Oesterheld; M Aguiar; C Ghersa & J Paruelo (eds.) La heterogeneidad de la vegetación de los agroecosistemas. Un homenaje a Rolando León. Ed. Facultad de Agronomía. Buenos Aires, Argentina.

BURKART, SE; RJC LEÓN & CP MOVIA (EX AEQUO). 1990. Inventario fitosociológico del pastizal de la Depresión del Salado (Prov. de Bs. As.) en un área representativa de sus principales ambientes. Darwiniana, 30:27-69.

CABIDO, M; N ATECA; ME ATEGIANO & AM ANTON. 1997. Distribution of C3 and C4 grasses along an altitudinal gradient in Central Argentina. J. Biogeog., 24:197-204.

CABRERA, AL. 1976. Regiones fitogeográficas argentinas. 85 pp. Enciclopedia Argentina de Agricultura y Jardinería. 2da edición. Ed. ACME.

CAPPANNINI, D; CO SCOPPA & JR VARGAS GIL. 1971. Suelos de las Sierras Australes de la Provincia de Buenos Aires. Pp. 203-234 in: Reunión Geología Sierras Australes. Comisión Investigaciones Científicas. La Plata, Argentina. CAVAGNARO, JB. 1988. Distribution of C3 and C4 grasses at different altitudes in a temperate arid region of Argentina. Oecologia, 76:273-277.

CAWSEY, EM; MP AUSTIN & BL BAKER. 2002. Regional vegetation mapping in Australia: a case study in the practical use of statistical modelling. Biodivers. Conserv., 11(12): 2239-2274.

CINGOLANI, AM; DM RENISONA; MR ZAK & MR CABIDO. 2004. Mapping vegetation in a heterogeneous mountain rangeland using landsat data: an alternative method to define and classify land- cover units. Remote Sens. Environ., 92:84–97.

CONGALTON, RG. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ., 37:35-46.

CONGALTON, RG; K BIRCH; R JONES & J SCHRIEVER. 2002. Evaluating remotely sensed techniques for mapping riparian vegetation. Comput. Electron. Agric., 37:113-26.

DE LA SOTA, ER. 1967. Composición, origen y vinculaciones de la flora pteridológica de las Sierras de Buenos Aires (Argentina). Bol. Soc. Argentina de Botánica, 11:105-128.

DÍAZ, S; I NOY-MEIR & MR CABIDO. 2001. Can grazing response of herbaceous plants be predicted from simple vegetative traits? J. Appl. Ecol., 38:497-508.

ERDAS.1995. ERDAS field guide. 3rd ed. Atlanta: ERDAS.

FRANGI, JL & MD BARRERA. 1996. Biodiversidad y dinámica de los pastizales en la Sierra de la Ventana, Provincia de Buenos Aires. Pp. 134-162 in: G Sarmiento & M Cabido (ed.). Biodiversidad y funcionamiento de pastizales y sabanas en América Latina. Mérida: Cyted y Cielat.

FRANGI, JL & OJ BOTTINO. 1995. Comunidades vegetales de la Sierra de la Ventana, Provincia de Buenos Aires. Rev. Fac. Agron. (La Plata), 71:93-133.

FRANKLIN, J. 1995. Predictive vegetation mapping: Geographical modelling of biospatial patterns in relation to environmental gradients. Prog. Phys. Geogr., 19:474-499.

FRANKLIN, J. 2002. Enhancing a regional vegetation map with predictive models of dominant plant species in chaparral. Appl. Veg. Sci., 5:135-146.

GARBULSKY, MF. 2004. Distribución y funcionamiento de las áreas protegidas de Argentina. Diferencias funcionales con áreas bajo uso agropecuario. Tesis de Magíster, Universidad de Buenos Aires.

GASPARI, FJ & JE BRUNO. 2003. Diagnóstico de degradación ambiental por erosión hídrica en la cuenca del arroyo Napostá Grande. Ecol. Austral, 13:109-120.

GUERSCHMAN, JP; JM PARUELO; CM Di BELLA; MC GIALLORENZI & F PACIN. 2003. Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data. Int. J. Remote Sens., 24:3381-3402.

KRISTENSEN, MJ & JL FRANGI. 1995a. Mesoclimas de pastizales de la Sierra de la Ventana. Ecol. Austral, 5:55-64.

KRISTENSEN, MJ & JL FRANGI. 1995b. La Sierra de La Ventana: una isla de biodiversidad. Ciencia Hoy, 5: 25-34.

LEÓN, RJC; SE BURKART & CP MOVIA. 1979. La vegetación de la República Argentina. Relevamiento fitosociológico del pastizal del norte de la Depresión del Salado. (Partido de Magdalena y Brandsen, prov. de Bs.As.). Instituto Nacional de Tecnología Agropecuaria. Serie Fotogeográfica, 17:11-93.

LEÓN, RJC & N MARANGÓN. 1980. Delimitación de unidades en el pastizal puntano. Sus relaciones con el pastoreo. Bol. Soc. Arg. Bot., 19:277-288.

MARGULES, CR & RL PRESSEY. 2000. Systematic conservation planning. Nature, 405:243–253

MUELLER DOMBOIS, D & H ELLEMBERG. 1974. Causal- Analytical Inquiries into the Origin of Plant Communities. Pp. 335-370 in: Aims and Method of Vegetation Ecology. John Wiley & Sons. New York, USA.

MURAKAMI, T; S OGAWA; N ISHITSUKA; K KUMAGAI & G SAITO. 2001. Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan. Int. J. Remote Sens., 22:1335-1348

PARUELO, JM; RA GOLLUSCIO; JP GUERSCHMAN; A CESA; VV JOUVE & MF GARBULSKY. 2004. Regional scale relationships between ecosystem structure and functioning. The case of the Patagonian steppes. Global Ecol. Biogeogr., 13:385–395.

PARUELO, JM & WK LAUENROTH. 1996. Relative abundance of plant functional types in grasslands and shrublands of North America. Ecol. Appl., 6:1212–1224.

PEREZ, CA & JL FRANGI. 2000. Grassland biomass dynamics an altitudinal gradient in the Pampa. J. Range Manag., 53:518-528.

RICCI, S. 1996. Estudios sobre la actividad humana en los ecosistemas naturales de la región serrana y sus consecuencias. Pp. 144-152 en: G Sarmiento & M Cabido (ed.). Biodiversidad y funcionamiento de pastizales y sabanas en América Latina. Mérida. Cyted y Cielat.

RICHARDS, JA. 1986. Remote Sensing Digital Image Analysis. Springer-Verlag. Berlin, Germany. 281 pp.

RODRÍGUEZ E; CS MORRIS & JE BELZ. 2006. A Global Assessment of the SRTM Performance. Photogramm. Eng. Rem. Sens., 72: 249–260.

SAGE, RF; DA WEDIN & M LI. 1999. The Biogeography of C4 photosythesis: patterns and controlling factors. Pp.313-373 in: RF Sage & RK Monson (ed). C4 Plant Biology. Academia Press. San Diego, USA.

SAGPYA-INTA. 1989. Mapa de suelos de la Provincia de Buenos Aires a escala 1:500000. Centro de Investigaciones de Recursos Naturales. Proyecto PNUD/ARG/85/019.

SALA, OE; FS CHAPIN III; JJ ARMESTO; E BERLOW; J BLOOMFIELD ET AL. 2000. Review: Biodiversity. Global Biodiversity Scenarios for the Year 2100. Science, 87:1770-1774.

SALA, OE & JM PARUELO. 1997. Ecosystems service in grasslands. Pp. 237-252 in: G Daily (ed.). Nature’s services, societal dependence on natural ecosystems. Island Press. Washington, DC, USA.

SHUPE, SM & SE MARSH. 2004. Cover- and density- based vegetation classifications of the Sonoran Desert using Landsat TM and ERS-1 SAR imagery. Remote Sens. Environ., 93:131–149.

SMN (SERVICIO METEOROLÓGICO NACIONAL). 1960. Atlas climático de la República Argentina. Buenos Aires. Servicio Meteorológico Nacional.

SMN (SERVICIO METEOROLÓGICO NACIONAL). 1981. Estadísticas Climatológicas. N° 37. Serie 1981-1990. Buenos Aires. Servicio Meteorológico Nacional.
SORIANO, A. 1991. Río de la Plata Grasslands. Pp. 367- 407 in: RT Coupland (ed.) Ecosystems at the World 8A. Introduction and western hemisphere. Elsevier. New York, USA.

TÜXEN, R. 1956. Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew. Pflanzensoziol. (Stolzenau), 13:5-42.

URBAN, L; RV O’NEILL & HH SHUGART JR. 1987. Landscape Ecology. A hierchical perspective can help scientist understand spatial patterns. BioScience, 37:119-127.

VAN ZUIDAM, R & FI VAN ZUIDAM-CANCELADO. 1979. Terrain Analysis and classification using aerial photographs. ITC, The Hague, Netherlands, 310 pp.

VARGAS GIL, JR & CO SCOPA. 1973. Suelos de la Provincia de Buenos Aires. Revista de Investigaciones Agropecuarias, 10:57-79.

WINSLOW, JC; ER HUNT JR. & SC PIPER. 2003. The influence of seasonal water availability on global C3 versus C4 grassland biomass and its implications for climate change research. Ecol. Model., 163:153-173.

ZAK, MR & M CABIDO. 2002. Spatial patterns of the Chaco vegetation of central Argentina: Integration of remote sensing and phytosociology. Appl. Veg. Sci., 5:213-226.

ZALBA, SM & CB VILLAMIL. 2002. Woody plant invasion in relictual grasslands. Biol. Invasions, 4:55-72.

ZERBE, S. 1998. Potential natural vegetation: validity and applicability in landscape planning and nature conservation. Appl. Veg. Sci., 1:165-172.

Published

2007-12-01

How to Cite

Lizzi, J. M., Garbulsky, M. F., Golluscio, R. A., & Deregibus, A. V. (2007). Indirect vegetation mapping in topographically complex areas: the case of Sierra de la Ventana, province of Buenos Aires. Ecología Austral, 17(2), 217–230. Retrieved from https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1408

Issue

Section

Articles