Vegetation heterogeneity of natural grasslands on the basaltic region of Uruguay

Authors

  • Felipe Lezama Sección Ecología Terrestre, Depto. de Ecología, Fac. de Ciencias, Univ. de la República, Montevideo, Uruguay.
  • Alice Altesor Sección Ecología Terrestre, Depto. de Ecología, Fac. de Ciencias, Univ. de la República, Montevideo, Uruguay.
  • Rolando J. León Cátedra de Ecología. IFEVA, Fac. de Agronomía, Univ. de Buenos Aires y CONICET, Buenos Aires, Argentina.
  • José M. Paruelo Lab. de Análisis Regional y Teledetección, IFEVA, Fac. de Agronomía, Univ. de Buenos Aires y CONICET, Buenos Aires, Argentina.

Keywords:

phytosociology, communities, remote sensing, plant functional types, water availability

Abstract

We described vegetation heterogeneity and its relationship with environmental variables over an area of the basaltic region of central and north-western Uruguay dominated by shallow soils. Natural grasslands under continuous grazing by cattle and sheep are the predominant vegetation type (90%) of this geomorphologic region that comprises approximately 1.5 millions hectares. Vegetation data were obtained using the relevé method. Stands were sampled preferentially to represent all the perceptible physiognomic vegetation types. In quadrats of 10 x 10 m, located in the centre of each stand, floristic composition and structural characteristics of vegetation were recorded. Each species was visually assigned to a cover – abundance class following the scale proposed by Braun-Blanquet. Additionally, for each stand, we measured environmental variables (soil depth, top 10 cm of soil texture, slope, percent cover of rock and pebble, macro and micro topographical characteristics and livestock faecal abundance). Normalized Differential Vegetation Index (NDVI), a surrogate for net primary production, was derived from Landsat TM images. The species by relevés matrix with presence/absence data was subjected to multivariate analysis to reveal vegetation patterns. Agglomerative classification, based on Ward ́s method and Jaccard’s distance, was used to identify main groups in species relevés and the hierarchical relationships among them. The optimal levels of clustering and the indicator species for each cluster were determined by indicator species analysis. Correspondence analysis was carried out to describe floristic gradients. Relationships between ordination axes and environmental variables were explored by correlation analysis. Two hundred seventy four vascular plant species, representing 43 families, were encountered in 46 relevés. The families with the highest number of species were Poaceae (78) and Asteraceae (44). The best represented genera were: Stipa (8), Paspalum (7), and Aristida (7). A structure of six communities grouped in three main vegetation units emerged from this procedure: Meso–xerophytic grasslands, Litophytic steppes and Meso–hidrophytic grasslands. The main vegetation units showed different physiognomies and occurred on sites with different combinations of topography and soil properties. Meso–xerophytic grasslands showed predominantly a two layer structure with high-to-mid plant cover. The upper layer was dominated by grasses and sub-shrubs and the lower layer by forbs and grasses. This unit occurred mainly on shallow soils on steep and gentle slopes and convex interfluves of hills. Litophytic steppes showed one open layer dominated by Selaginella sellowii Hieron, a small pteridophyte. This unit was associated to flat erosion surfaces at high and middle topographical positions. The Meso–hidrophytic grasslands unit was a closed vegetation type, with two layers dominated by grasses and graminoids. This unit occurred predominantly on deep soils on gentle low slopes, valleys and plains. The first ordination axis explained a 62.7% of the variance and detected a water availability gradient going from Meso–hidrophytic grasslands to Litophytic steppes and Meso–xerophytic grasslands. The environmental controls of this water gradient were soil depth, texture, slope and microtopography. The position of the relevés along the main floristic gradient was strongly correlated to NDVI (p < 0.05).The second axis explained a 20.3% of the variation, and separated Litophytic steppes from Meso–xerophytic and Meso-hidrophytic grasslands. The present study provides information that could be useful for the design of grassland management practices and selection of conservation areas.

References

ACOSTA, A; S DÍAZ; M MENGHI & M CABIDO. 1992. Patrones comunitarios a diferentes escalas espaciales en pastizales de las Sierras de Córdoba, Argentina. Rev. chil. hist. nat., 65:195-207.

ADLER, P & J MORALES. 1999. Influence of environmental factors and sheep grazing on an Andean grassland. J. Range Manag., 52: 471-481.

ALTAMIRANO, A; H DA SILVA; A DURÁN; A ECHEVERRÍA; D PANARIO & R PUENTES.1976. Clasificación de Suelos. Dirección de Suelos y Fertilizantes. Ministerio de Agricultura y Pesca. Tomo I. Montevideo.

ALTESOR, A; G PIÑEIRO; F LEZAMA; RB JACKSON; M SARASOLA et al.. 2006. Ecosystem changes associated with grazing removal in sub-humid grasslands of South America. J. Veg. Sci., 17:323-332.

BATISTA, WB; RJC LEÓN & SB PERELMAN. 1988. Las comunidades vegetales de un pastizal natural de la Región de Laprida, Prov. de Buenos Aires, Argentina. Phytocoenologia, 16:465-480.

BERRETA, EJ. 1998. Principales características climáticas y edáficas de la región de Basalto en Uruguay. INIA Tacuarembó. Seminario de actualización en tecnologías para Basalto. Serie técnica no102. Pp. 310.

BOSSI, J & R NAVARRO.1988. Geología del Uruguay. Universidad de la República. Montevideo.

BOUYOUCOS, GJ. 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J., 54:464-465.

BRAUN-BLANQUET, J. 1950. Sociología Vegetal. ACME. Buenos Aires.

BURKART, SE; RJC LEÓN & CP MOVIA.1990. Inventario fitosociológico del Pastizal de la Depresión del Salado (Prov. Bs. As.) en un área representativa de sus principales ambientes. Darwiniana, 30:27-69.

BURKART, SE; RJC LEÓN; SB PERELMAN & M AGNUSDEI. 1998. The Grasslands of the Flooding Pampa (Argentina): floristic heterogeneity of natural communities of the southern rio salado basin. Coenoses, 13(1):17-27.

CABRERA, AL & A WILLINK. 1973. Biogeografía de América Latina. Monografía 13, Serie de Biología. OEA. Washington, USA.

CHANETON, E. 2005. Factores que determinan la heterogeneidad de la comunidad vegetal en diferentes escalas espaciales. Pp. 19-42 en: M Oesterheld et al. (eds). La heterogeneidad de la vegetación de los agroecosistemas; un homenaje a Rolado León. Editorial Facultad de Agronomía. Buenos Aires, Argentina.

CHANETON, E; SB PERELMAN; M OMACINI & RJC LEÓN. 2002. Grazing, environmental heterogeneity, and alien plant invasions in temperate Pampa grasslands. Biol. Invasions, 4:7-24.

CHEBATAROFF, J. 1951. Regiones naturales del Uruguay y de Río Grande del Sur. Revista Uruguaya de Geografía, 2(5):5-28.

CINGOLANI, A; M CABIDO; D RENISON & V SOLÍS NEFFA. 2003. Combined effects of environment and grazing on vegetation structure in Argentine granite grasslands. J. Veg. Sc., 14:223-232.

COLLANTES, M; J ANCHORENA & A CINGOLANI. 1999. The steppes of Tierra del Fuego: Floristic and growth-form patterns controlled by soil fertility and moisture. Plant Ecol., 140:61-75.

DUFRÊNE, M & P LEGENDRE. 1997. Species assemblages and indicator species: the need for a flexible asymetrical approach. Ecol. monogr., 67(3):345-366.

EWALD, J. 2003. A critique for phytosociology. J. Veg. Sci., 14:291-296.

GALLO, KP; CST DAUGHTRY & ME BAUER.1985. Spectral estimation of absorbed photosynthetically active radiation in corn canopies. Remote Sens. Environ., 22:209-203.

GAUCH, HGJR. 1982. Multivariate Analysis in Community Ecology. Cambridge Univ. Press. New York.

GOLLUSCIO, R; A DEREGIBUS & JM PARUELO. 1998. Sustainability and range management in the Patagonian steppes. Ecol. Austral., 8:265-284.

JOBBÁGY EG; JM PARUELO & RJC LEÓN. 1996. Vegetation Heterogeneity and diversity in flat and mountain landscapes of Patagonia (Argentina). J. Veg. Sci., 7:599-608.

LEÓN, RJC. 1992. Río de la Plata grasslands. Regional sub-divisions. Pp. 376-407 in: RT Coupland (ed.). Ecosystems of the World 8A: Natural grasslands. Elsevier. Amsterdam.

LEÓN, RJC; SE BURKART & CP MOVIA.1979. La vegetación de la República Argentina. Relevamiento fitosociológico del pastizal del norte de la Depresión del Salado (Partidos de Magdalena y Brandsen, Pcia.de Bs. As.). Instituto Nacional de Tecnología Agropecuaria. Serie Fitogeográfica, 17:11-93.

LEÓN, RJC & JM FACELLI. 1981. Descripción de una coenoclina en el SW del Chubut. Rev. de la Facultad de Agronomía, 2:163-171.

LEVIN, S. 1992. The problem of pattern and scale in ecology. Ecology, 73:1943-1967.

MCCUNE, B & MJ MEFFORD. 1999. Multivariate Analysis of Ecological Data, Version 4.0. MjM Software. Gleneden Beach, Oregon.

MCGEOCH, MA; BJ VAN RENSBURG & A BOTES. 2002. The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. J. Appl. Ecol., 39:661-672.

MILLOT, JC; D RISSO & R METHOL.1987. Relevamiento de pasturas naturales y mejoramientos extensivos en áreas ganaderas del Uruguay. Informe Técnico, Ministerio de Ganadería, Agricultura y Pesca, Montevideo.

MINISTERIO DE GANADERIA, AGRICULTURA Y PESCA (MGAP), DIRECCIÓN DE ESTADÍSTICAS AGROPECUARIAS (DIEA). 2000. Censo General Agropecuario. MONTEITH, JL. 1981. Climatic variation and the growth of crops. Quarterly Journal of the Royal Meteorological Society, 107:749-774.

MUELLER - DOMBOIS, D & H ELLENBERG.1974. Aims and methods of vegetation ecology. Wiley & Sons. New York, USA:

PARUELO, JM; RA GOLLUSCIO; JP GUERSCHMAN; A CESA; V JOUVE et al. 2004. Regional scale relationships between ecosystem structure and functioning: the case of the Patagonian steppes. Glob. Ecol. Biogeogr., 13:385-395.

PERELMAN, SB; WB BATISTA; E CHANETON & RJC LEÓN. 2001b. Invasión de ambientes extremos y comunidades zonales de pastizales pampeanos por especies vegetales exóticas. XVIII Jornadas de Fitosociología.

PERELMAN, SB; RJC LEÓN & M OESTERHELD. 2001a. Cross-scale vegetation patterns of Flooding Pampa grasslands. J. Ecol., 89:562-577.

RODRÍGUEZ, C; E LEONI; F LEZAMA & A ALTESOR. 2003. Temporal trends in species composition and plant traits in natural grasslands of Uruguay. Journal Veg. Sci., 14:433-440.

ROSENGURTT, B. 1979. Tablas de comportamiento de las especies de plantas de campos naturales en el Uruguay. Publicación de la Facultad de Agronomía. Montevideo, Uruguay.

ROSENGURTT, B. 1994. Especies campestres generales. En: Contribución de los estudios edafológicos al conocimiento de la vegetación en la República Oriental del Uruguay. Boletín Técnico No13, Ministerio de Ganadería, Agricultura y Pesca. Montevideo, Uruguay.

SGANGA, JC.1994. Caracterización de la Vegetación de la R.O.U. En: Contribución de los estudios edafológicos al conocimientos de la vegetación en la República Oriental del Uruguay. Boletín Técnico No13, Ministerio de Ganadería, Agricultura y Pesca.

Published

2006-12-01

How to Cite

Lezama, F., Altesor, A., León, R. J., & Paruelo, J. M. (2006). Vegetation heterogeneity of natural grasslands on the basaltic region of Uruguay. Ecología Austral, 16(2), 167–182. Retrieved from https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1441

Issue

Section

Articles