Grazing effect on the seed bank of a halophytic steppe of the Flooding Pampa, Argentina
DOI:
https://doi.org/10.25260/EA.22.32.1.0.1509Keywords:
grazing management, restoration, saline-sodic soils, soil seedbankAbstract
Rotational grazing, or even grazing cessation, improves soil and plant community structure on the halophytic steppe of the Flooding Pampa. However, no information exists about the effect of those grazing regimes on the soil seed bank of this fragile plant community. The objective of this work was to evaluate the effect of different grazing regimes on four attributes of the soil seed bank: 1) total size, 2) size and relative contribution of the functional groups of winter grasses (annual and perennial), summer grasses (annual and perennial), non-grass monocotyledonous, legumes and non-legume dicotyledonous, 3) diversity and 4) floristic composition. We studied five plots subjected to different grazing regimes for 14 years (two plots under continuous grazing; two plots under rotating grazing and one excluded from grazing), sampling in June and February to characterize the summer and winter soil seed bank. We found that continuous grazing reduced total seed bank size, and especially that of winter annual grasses and monocotyledonous, and also reduced floristic diversity, richness and evenness, especially in the summer seed bank. In addition, continuous grazing triggered important species replacements within each functional group, especially in the winter annual grasses, summer perennial grasses and dicotyledonous, the three groups explaining most proportion of the soil seed bank. Therefore, plots under continuous grazing were floristically different from those under rotational grazing or ungrazed. This work suggests that continuous grazing is a severe disturbance which can reduce the regeneration potential of the halophytic steppe.
References
Abernethy, V. J., and N. J. Willby. 1999. Changes along a disturbance gradient in the density and composition of propagule banks in floodplain aquatic habitats. Plant Ecology 140:177-190. https://doi.org/10.1023/A:1009779411686.
Bertiller, M. B. 1996. Seasonal variation in the seed bank of Patagonian grassland in relation to grazing and topography. Journal of Vegetation Science 3:47-54. https://doi.org/10.2307/3235997.
Biondini, M. E., B. D. Patton, and P. E. Nyren. 1998. Grazing intensity and ecosystem process in a northern mixed-grass prairie, USA. Ecological Applications 8:469-479. https://doi.org/10.1890/1051-0761(1998)008[0469:GIAEPI]2.0.CO;2.
Bolaños, V. R., M. C. Vecchio, and R. A. Golluscio. 2019. Temperaturas de germinación de cuatro gramíneas nativas del pastizal halofítico de la Pampa Deprimida, Argentina. Ecología Austral 29:249-260. https://doi.org/10.25260/EA.19.29.2.0.788.
Braun-Blanquet, J. 1979. Fitosociología. Bases para el estudio de las comunidades vegetales. Blume Ediciones, Madrid.
Burkart, S. E., M. F. Garbulsky, C. M. Ghersa, J. P. Guerschman, J. C. R. León, M. Oesterheld, J. M. Paruelo, and S. B. Perelman (ex aequo). 2005. Las comunidades potenciales del pastizal pampeano bonaerense. Pp. 379-387 in M. Oesterheld, M. Aguiar, C. Ghersa and J. Paruelo (eds.). La Heterogeneidad de la Vegetación de los Agroecosistemas. Un Homenaje a Rolando León. Facultad de Agronomía, UBA. Buenos Aires, Argentina.
Chambers, J. C., and J. A. MacMahon. 1994. A day in the life of a seed: movements and fates of sedes and theirs implications for natural and management systems. Annual Review of Ecology and Systematics 25:263-292. https://doi.org/10.1146/annurev.es.25.110194.001403.
Chaneton, E. J., S. B. Perelman, M. Omacini, and R. J. C. Léon. 2002. Grazing, environmental heterogeneity, and alien plant invasions in temperate Pampa grasslands. Biological Invasions 4:7-24. https://doi.org/10.1023/A:1020536728448.
Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada, and C. W. Robledo. 2018. InfoStat versión 2018. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
Dítětová, Z., D. Dítě, E. Pavol, and G. Dobromil. 2016. The impact of grazing absence in inland saline vegetation - a case study from Slovakia. Biologia 71:980-988. https://doi.org/10.1515/biolog-2016-0125.
Fernández, R. J., A. H. Núñez, and A. Soriano. 1992. Contrasting demography of two Patagonian shrubs under different conditions of sheep grazing y resource supply. Oecologia 91:39-46. https://doi.org/10.1007/BF00317238.
Fisher, J., W. Loneragan, K. Dixon, and E. Veneklass. 2009. Soil seed bank compositional change constrains biodiversity in an invaded species-rich woodland. Biological Conservation 142:256-269. https://doi.org/10.1016/j.biocon.2008.10.019.
Funes, G., S. Basconcelo, S. Díaz, and M. Cabido. 2001. Edaphic patchiness influences grassland regeneration from the soil seed-bank in mountain grasslands of central Argentina. Austral Ecology 26:205-212. https://doi.org/10.1046/j.1442-9993.2001.01102.x.
Ghermandi, L. 1992. Caracterización del banco de semillas de una estepa en el noroeste de Patagonia. Ecología Austral 2:39-46.
Gioria, M., V. Jarosík, and P. Pyšek. 2014. Impact of invasions by alien plants on soil seed bank communities: emerging patterns. Perspectives in Plant Ecology 16:132-142. https://doi.org/10.1016/j.ppees.2014.03.003.
Gordon, E. 2000. Dinámica de la vegetación y del banco de semillas en un humedal herbáceo lacustrino (Venezuela). Revista de Biología Tropical 48(1):25-42.
Haretche, F., and C. Rodríguez. 2006. Banco de semillas de un pastizal uruguayo bajo diferentes condiciones de pastoreo. Ecología Austral 16:105-113.
Henderson, C. B., K. E. Petersen, and R. A. Redak. 1988. Spatial and temporal patterns in the seed bank and vegetation of a desert grassland community. Journal of Ecology 76:717-728. https://doi.org/10.2307/2260569.
Hopfensperger, K. N. 2007. A review of similarity between seed bank and standing vegetation across ecosystems. Oikos 116:1438-1448. https://doi.org/10.1111/j.0030-1299.2007.15818.x.
Hodgkinson, K. C. 1992. Elements of grazing strategies for perennial grass management in Rangelands. Pp. 77-94 in G. P. Chapman (ed,). Desertified Grasslands: their Biology and Management (Linnean Society Symposium Series No 13). London. Academic Press.
Hulme, P. E. 1998. Post-dispersal seed predation and seed bank persistence. Seed Science Research 8:513-519. https://doi.org/10.1017/S0960258500004487.
Hurlbert, S. H. 1984. Pseudoreplication and the Design of Ecological Field Experiments. Ecological Monographs 54(2):187-211. https://doi.org/10.2307/1942661.
Jacobo, E. J., A. M. Rodríguez, N. Bartoloni, and V. A. Deregibus. 2006. Rotational grazing. Effects on Rangeland Vegetation at a Farm scale. Rangeland Ecology and Management 59:249-257. https://doi.org/10.2111/05-129R1.1.
Kassahun, A., H. A Snyman, and G. N. Smit. 2009. Soil seed bank evaluation along a degradation gradient in arid rangelands of the Somali region, eastern Ethiopia. Agriculture, Ecosystems and Environment 129:428-436. https://doi.org/10.1016/j.agee.2008.10.016
Laterra, P., L. Ricci, O. Vignolio, and O. N. Fernández. 1994. Efectos del fuego y del pastoreo sobre la regeneración por semillas de Paspalum quadrifarium en la Pampa Deprimida, Argentina. Ecología Austral 4:101-109.
Lavado, R. S., and M. A. Taboada. 1988. Water, SALT and sodium dynamics in a Natraquoll in Argentina. Catena 15:577-594. https://doi.org/10.1016/0341-8162(88)90008-2.
Legendre, P., and L. Legendre. 1998. Numerical Ecology. Elsevier: Amsterdam. Pp. 853.
León, R. J. C., S. Burkart, and C. P. Movia. 1979. Relevamiento fitosociológico del pastizal del Norte de la Depresión del Salado. Serie Fitogeografica 17. I.N.T.A. Buenos Aires. Pp. 90.
Loydi, A., S. M. Zalba, and R. A. Diltel. 2012. Viable seed banks under grazing and exclosure conditions in montane mesic grasslands of Argentina. Acta Oecologica 43:8-15. https://doi.org/10.1016/j.actao.2012.05.002.
Loydi, A. 2019. Effects of grazing exclusion on vegetation and seed bank composition in a mesic mountain grassland in Argentina. Plant Ecology and Diversity 12(2):127-138. https://doi.org/10.1080/17550874.2019.1593544.
Magurran, A. E. 2004. Introduction: measurement of (biological) diversity. Pp. 1-17 in A. E. Magurran (ed.). Measuring Biological Diversity. Blackwell Publishing, UK.
Marco, D. E., and S. A. Páez. 2000. Soil Seed Banks on Argentine Seminatural Mountain Grasslands After Cessation of Grazing. Mountain Research and Development 20(3):254-261. https://doi.org/10.1659/0276-4741(2000)020[0254:SSBOAS]2.0.CO;2.
Mac Graw, J., and M. Varek. 1989. The Role of Burried Viable Seeds in Artic and Alpin Communities. Pp. 91-105 in M. Leck, V. Parker and L. Simpson (eds.). Ecology of Soil Seed Bank. Academic Press, San Diego, California. https://doi.org/10.1016/B978-0-12-440405-2.50011-7.
Marone, L., and R. G. Pol. 2021. Continuous grazing disrupts desert grass-soil seed bank composition under variable rainfall. Plant Ecology 222:247-259. https://doi.org/10.1007/s11258-020-01102-4.
McCune, B., and M. J. Mefford. 1999. Multivariate Analysis of Ecological Data. Version 4.0. MJM Software, Gleneden Beach, Oregon.
Márquez, S., G. Funes, M. Cabido, and E. Pucheta. 2002. Efecto del pastoreo sobre el banco de semillas germinable y la vegetación establecida en pastizales de montaña del centro de Argentina. Revista Chilena de Historia Natural 75:327-337. https://doi.org/10.4067/S0716-078X2002000200006.
Milberg, P., L. Andersson, and K. Thompson. 2000. Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Science Research 10(1):99-104. https://doi.org/10.1017/S0960258500000118.
Noble, I. R., and H. Gitay. 1996. A functional classification for predicting the dynamics of landscapes. Journal of Vegetation Science 7:329-336. https://doi.org/10.2307/3236276.
Noy-Meir, I. 1990. Responses of two semiarid rangeland communities to protection from grazing. Israel Journal of Botany 39:431-442.
O'Connor, T. G. 1991. Local extinction in perennial grasslands: a life-history approach. American Naturalist 137:753-773. https://doi.org/10.1086/285192.
O'Connor, T. G., and S. T. A. Pickett. 1992. The influence of grazing on seed production and seed banks of some African savanna grasslands. Journal of Applied Ecology 29:247-260. https://doi.org/10.2307/2404367.
Oyarzabal, M., J. Clavijo, L. Oakley, F. Biganzoli, P. Tognetti, I. Barberis, H. M. Maturo, R. Aragón, P. I. Campanello, D. Prado, M. Oesterheld, and R. León. 2018. Unidades de Vegetación de la Argentina. Ecología Austral 28:040-063. https://doi.org/10.25260/EA.18.28.1.0.399.
Perelman, S. B., R. J. C. León, and M. Oesterheld. 2001. Cross-Scale vegetation patterns of Flooding Pampa grasslands. Journal of Ecology 89:562-577. https://doi.org/10.1046/j.0022-0477.2001.00579.x.
Puhl, L. E., S. B. Perelman, W. B. Batista, S. E. Burkart, and R. J. C. Léon. 2014. Local and regional long-term diversity changes and biotic homogenization in two temperate grasslands. Journal of Vegetation Science 25:1278-1288. https://doi.org/10.1111/jvs.12179.
Real, R., and J. M. Vargas. 1996. The probabilistic basis of Jaccard's index of similarity. Systematic Biology 45(3):380-385. https://doi.org/10.1093/sysbio/45.3.380.
Roberts, H. A. 1981. Seed Banks in soils. Advances in Applied Biology 6:1-55.
Rodríguez, A. M., and E. Jacobo. 2010. Glyphosate effects on floristic composition and species diversity in the Flooding Pampa grassland (Argentina). Agriculture, Ecosystems and Environment 138:222-231. https://doi.org/10.1016/j.agee.2010.05.003.
Rodríguez, A. M., and E. Jacobo. 2013. Glyphosate effects on seed bank and vegetation composition of temperate grasslands. Applied Vegetation Science 16:51-62. https://doi.org/10.1111/j.1654-109X.2012.01213.x.
Shannon, C. E., and W. W. Weaver. 1963. The mathematical theory of communications. University of Illinois Press, Urbana. Pp 117.
Smith, S. E., R. Mosher, and D. Fendenheim. 2000. Seed production in sideoats grama populations with different grazing histories. Journal of Range Management 53:550-555. https://doi.org/10.2307/4003657.
Tessema, Z. K., W. F. B. Boer, and H. H. T. Prins. 2016. Changes in grass plant populations and temporal soil seed bank dynamics in a semi-arid African savanna: implications for restoration. Journal of Environmental Management 182:166-175. https://doi.org/10.1016/j.jenvman.2016.07.057.
Thompson, K. 1992. The functional ecology of seed banks. Pp. 231-258 in M. Fenner (ed.). Seeds. The Ecology of Regeneration in Plant Communities. C.A.B. International. Wallingford, UK.
Valkó, O., B. Tóthmérész, A. Kelemen, E. Simon, T. Miglécz, B. Lukács, and P. Török. 2014. Environmental factors driving seed bank diversity in alkali grasslands, Agriculture, Ecosystems and Environment 182:80-87. https://doi.org/10.1016/j.agee.2013.06.012.
Vecchio, M. C., R. Golluscio, A. Rodríguez, and M. A. Taboada. 2018. Improvement of saline-sodic grassland soil properties by rotational grazing in Argentina. Rangeland Ecology and Management 71(6):807-814. https://doi.org/10.1016/j.rama.2018.04.010.
Vecchio, M. C., V. R. Bolaños, R. Golluscio, and A. Rodríguez. 2019. Rotational grazing and exclosures improves grassland condition of the halophytic steppe in Flooding Pampa (Argentina) compared with continuous grazing. The Rangeland Journal 41(1):1-12. https://doi.org/10.1071/RJ18016.
Vecchio, M. C., and R. Refi. 2019. Ganadería bovina de ciclo completo, agricultura permanente y rotación agrícola-ganadera en la transición Pampa Ondulada - Pampa Deprimida. Proyecto Institucional para el Desarrollo Tecnológico y Social. Exp N°200-3192/17. Resolución N°: 168. Facultad de Ciencias Agrarias y Forestales. UNLP.
Wang, N., X. He, F. Zhao, D. Wang, and J. Jiao. 2020. Soil seed bank in different vegetation types in the Loess Plateau region and its role in vegetation restoration. Restoration Ecology 28:A5-A12. https://doi.org/10.1111/rec.13169.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 María C. Vecchio, María I. Lissarrague, Bárbara Heguy, Lorena Mendicino, Adriana M. Rodríguez, Rodolfo A. Golluscio
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.