Herbivory patterns of six woody species from the temperate forest of South America: preliminar evidence to the carbon–nutrient balance hypothesis

Authors

  • Romina Dimarco Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina
  • Gabriel Russo Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina
  • Alejandro G. Farji-Brener Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina

Keywords:

foliar damage, intra-specific variation, Patagonia

Abstract

The carbon-nutrient balance hypothesis (CNBH) explains the intraspecific variation in herbivory levels suggesting that, when plants acquire resources in excess of growth demands (e.g., light), these resources are shunted into production of chemical defenses. We documented the intraspecific variation of herbivory levels in six woody plant species from the South American temperate forest to determine whether these patterns support the predictions of the CNBH. For all the species studied, plants located in sites with high light availability showed between 1.2–5 times less foliar damage than those located in sites with low light availability. These results, although preliminary, support the CNBH. Future studies could test whether the mechanisms responsible for this pattern are those proposed by the CNBH.

References

AUGSPURGER, CK. 1984. Seedling survival of tropical tree species: interactions of dispersal distance, light gaps, and pathogens. Ecology 65:1705-1712.

BERISH, CW. 1986. Leaf-cutting ants (Atta cephalotes) select nitrogen-rich foliage. Am. Midl. Nat. 115: 267-276.

BOWERS, MA & SD PORTER. 1981. Effect of foraging distance on water content of substrates harvested by Atta colombica. Ecology 74:273-275.

BRYANT, JP; FS CHAPIN III & DR Klein. 1983. Carbon/ nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368.

CLARK, DA & DB CLARK. 1992. Life history diversity of canopy and emergent trees in a Neotropical rain forest. Ecol. Monogr. 62:315-344.

COLEY, PD; JP BRYANT & FS CHAPIN III. 1985. Resource availability and plant antiherbivore defense. Science 230:895-899.

COLEY, PD & A BARONE. 1996. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27:305-335.

CRAWLEY, MJ. 1983. Herbivory: the dynamics of animal-plant interactions. University of California Press. Berkeley.

CUAUTLE, M & V RICO-GRAY. 2003. The effect of wasps and ants on the reproductive success of the extrafloral nectaried plant Turnera ulmifolia (Turneraceae). Funct. Ecol. 17:417-423.

DIRZO, R & C DOMÍNGUEZ. 1995. Plant-herbivore interactions in Mesoamerican tropical dry forests. Pp. 304-345 en: S Bullock; S Mooney & E Medina (eds). Seasonally dry tropical forests. Cambridge University Press. Cambridge.

DOMÍNGUEZ, CA; R DIRZO & SH BULLOCK. 1989. On the function of floral nectar in Croton suberosus (Euphorbiaceae). Oikos 56:109-114.

EDWARD-JONES, G & VK BROWN. 1993. Successional trends in insect herbivore population densities: a field test of a hypothesis. Oikos 66:463-471.

GRAMACHO, M; T SANTANDER & AG FARJI-BRENER. 2001. Efectos de la herbivoría sobre la cantidad de óvulos en Loasa speciosa (Loasaceae). Rev. Biol. Trop. 49:513-516.

HAMILTON, JG; AR ZANGERL; EH DELUCIA & MR BEREMBAUN. 2001. The carbon-nutrient hypothesis: its rise and fall. Ecol. Lett. 4:86-95.

HARRISON, S. 1987. Treefall gaps versus forest understory as environments for a defoliating moth on a tropical forest shrub. Oecologia 72:65-68.

HOWARD, JJ. 1987. Leaf-cutting ant diet selection: the role of nutrients, water, and secondary chemistry. Ecology 68:503-515.

KORICHEVA, J. 2002. The carbon–nutrient balance hypothesis is dead; long live the carbon–nutrient balance hypotheses? Oikos 98:537-539.

KORICHEVA, J; S LARSSON; E HAUKIOJA & M KEINANEM. 1998. Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta–analysis. Oikos 83:212-226.

LEHTILA, K & S STRAUSS. 1999. Effects of foliar herbivory on male and female reproductive traits of wild radish, Raphanus raphanistrum. Ecology 80:116-124.

LERDAU, M & PD COLEY. 2002. Benefits of the carbon–nutrient balance hypothesis. Oikos 98:534-536.

MARQUIS, RJ. 1984. Leaf herbivores decrease fitness of a tropical plant. Science 226:537-539.

NITAO, JK; AR ZANGERL & MR BEREMBAUN. 2002. CNB: requiescat in pace? Oikos 98:540-546.

PRICE, P. 1997. Insect ecology. 3rd edn. John Wiley & Sons. Nueva York.

PRICE, P; G WARING; R JULKUNEN-TITTO; J TAHVANAINEN; H MOONEY & T CRAIG. 1989. The carbon-nutrient balance hypothesis in within-species phytochemical variation of Salix lasiolepsis. J. Chem. Ecol. 15:1117-1131.

RHOADES, DF & RG CATES. 1976. Toward a general theory of plant antiherbivore chemistry. Recent Adv. Phytochem. 19:168–213.

WALLER, DA. 1982. Leaf-cutting ants and live oak: the role of leaf toughness in seasonal and intraspecific host choice. Entomol. Exp. Appl. 32:146-150.

Published

2004-06-01

How to Cite

Dimarco, R., Russo, G., & Farji-Brener, A. G. (2004). Herbivory patterns of six woody species from the temperate forest of South America: preliminar evidence to the carbon–nutrient balance hypothesis. Ecología Austral, 14(1), 039–043. Retrieved from https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1520

Issue

Section

Articles