Harvesting effects and residue fate on nutrient stability of Pinus taeda L. plantations

Authors

  • Juan F. Goya Fac. de Ciencias Agrarias y Forestales, Fac. de Ciencias Naturales y Museo, UNLP, La Plata, Argentina. Instituto de Fisiología Vegetal, Fac. de Ciencias Agrarias y Forestales, UNLP, La Plata, Argentina
  • Carolina Pérez Fac. de Ciencias Agrarias y Forestales, Fac. de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
  • Jorge L. Frangi Fac. de Ciencias Agrarias y Forestales, Fac. de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
  • Roberto Fernández EEA INTA Montecarlo, Montecarlo, Fac. de Ciencias Forestales. UNAM. Eldorado. Misiones, Argentina

Keywords:

subtropical plantations, conifers, nutrient stability index, Misiones, harvest nutrient budget

Abstract

This paperreports on the aboveground nutrient content atrotation time in Pinustaeda plantations of northern Misiones province, and assess the impact of three simulated harvest strategies on nutrient stability (exported nutrients/nutrients in soil): (1) harvest of marketable products (stems with bark up to 5 cm diameter) and slash abandonment on the site, (2) harvest and withdrawal of all the standing aboveground biomass (whole tree utilization), and (3) harvest of marketable products and slash burning in situ. The aboveground biomass plus litter mineral content per hectare was: 194 Mg for C, 1018 kg for N, 480 kg for Ca, 335 kg for K, 97 kg for Mg and 42 kg for P. Of these, 95% (C), 83% (N), 88% (Ca), 94% (K), 91% (Mg), and 79% (P) were in the aboveground biomass. P and K showed the most unbalanced budget (highest stability index) under the three scenarios. The least conservative harvest type (harvest of marketable products and slash burning) negatively impacted on nutrient stability by a factor of 1.4 (K, Ca and Mg), 1.8 (N), and 2.3 (P) times more than the most conservative one (stem harvest only). Assuming that the rate of spontaneous net reposition of nutrients to the soil within the time frame of a given rotation cycle is non-significant, and that fertilisers are not added, the most extractive harvest practice will reduce the exchangeable nutrient stock in the short-term, attaining critical thresholds of the nutritive stability index for P and K in about two rotations. With actual management practices, these observations put uncertainties in the sustainability of the currently high rates of production of these forest crops.

References

BASKERVILLE, GL. 1965. Estimation of dry weight of tree components and total standing crop in conifer stands. Ecology 46:867-869.

CARLYLE, JC; MW BLIGH & EKS NAMBIAR. 1998. Woody residue management to reduce nitrogen and phosphorus leaching from sandy soil after clear-felling Pinus radiata (cursive) plantations. Can. J. Forest Res. 28:1222-1232.

CROW, TR. 1988. A Guide to using regression. Equations for estimating tree biomass. North. J. Appl. For. 5:15-22.

DALLA TEA, F & E JOKELA. 1991. Needlfall returns and resorption. Rates of nutrients in young intensively managed slash and loblolly pine stands. Forest Sci. 40:650-662.

FASSBENDER, HW. 1982. Química de suelos. IICA. San José. 398 pp.

FERNÁNDEZ, R; A LUPI; N PAHR; H REIS; H O ́LERY ET AL. 2000a. Técnicas de manejo de residuos de cosecha para el establecimiento forestal y su impacto sobre la condición química de los suelos rojos del noreste de Argentina. Pp. 243-248 en: Avances en Ingeniería Agrícola. Editorial Facultad Agronomía, UBA. Buenos Aires.

FERNÁNDEZ, R; F RODRÍGUEZ ASPILLAGA; A LUPI; E LÓPEZ; R PEZZUTTI ET AL. 2000b. Respuesta del Pinus taeda y la Araucaria angustifolia a la adición de N, P y K en la implantación. En: Actas silvoargentina 1. Disco Compacto. Asociación Forestal Argentina. Virasoro.

FISHER, RF & D BINKLEY. 2000. Ecology and management of forest soils. J Wiley & Sons. New York.

FLINN, DW; RO SQUIRE & PW FARRELL. 1980. The role of organic matter in the maintenance of productivity on sandy soils. New Zeal. J. For. 25:229-236.

FÖLSTER, H & PK KHANNA. 1997. Dynamics of nutrient supply in plantation soil. Pp. 339-378 en: EKS Nambiar & AG Brown (eds). Management of soil nutrients and water in tropical plantation forest. CSIRO. Canberra.

GERDIN, V & JE SCHLATTER. 1999. Estabilidad nutritiva de plantaciones de Pinus radiata D. Don en cinco sitios característicos de la VIII Región. Bosque 20:107-115.

GONÇALVES, JLM; NF BARROS; EKS NAMBIAR & RF NOVAIS. 1997. Soil and stand management for short-rotation plantations. Pp. 379-417 en: EKS Nambiar & AG Brown (eds). Management of soil nutrients and water in tropical plantation forest. CSIRO. Canberra.

GOYA, J; J FRANGI; C PÉREZ & M PINAZO. 2000. Ciclo de nutrientes en plantaciones de Pinus taeda en el norte de la provincia de Misiones. Informe inédito. SAGPyA-BIRF. 63 pp.

HOPMANS, P; HTL STEWART & DW FLINN. 1993. Impacts of harvesting on nutrients in eucalypt ecosystem in south-eastern Australia. Forest Ecol. Manag. 59:29-51.

HUNTER, AH. 1982. International soil fertility evaluation and improvement: laboratory procedures. Department of Soil Science, North Carolina State University. Raleigh.

INTA. 1998. Interpretación de resultados analíticos de suelos. Provincia de Misiones. Hoja Informativa No5. INTA, EEA Montecarlo.

INTA. 2000. Boletín de Información climática. INTA, EEA Montecarlo.

KIMMINS, JP. 1974. Sustained yield, timber mining, and the concept of ecological rotation; a British Columbian view. Forest. Chron. 50:27-31.

LECO. 1993. Carbon, nitrogen, and sulfurin soil,rock, and similar materials. Application Bulletin N° 203- 601-246. LECO Corporation Technical Services Laboratory. St Joseph.

LUH HUANG, CY & EE SCHULTE. 1985. Digestion of plant tissue for analysis by ICP emission spectroscopy. Commun. Soil Sci. Plan. 16:943-958.

O ́CONNELL, AM & KV SANKARAN. 1997. Organic matter accretion, decomposition and mineralisation. Pp. 443-480 en: EKS Nambiar & AG Brown (eds). Management of soil nutrients and water in tropical plantation forest. CSIRO. Canberra.

PRITCHETT, W & W COMERFORD. 1981. Nutrition and fertilization on slash pine. Pp. 69-90 en: EL Stone (ed). The managed slash pine ecosystem. School of Forest Resources and Conservation, University of Florida. Gainsville.

RAISON, RJ; PK KHANNA & PV WOODS. 1984. Mechanisms of element transfer to the atmosphere during vegetation fires. Can. J. Forest Res. 15:132-140.

SAGPyA. 2001. Sectorforestal. Anuario sobrerégimen de promoción de plantaciones forestales. Secretaria de Agricultura, Pesca y Alimentación, Dirección de Forestación. Buenos Aires.

SOKAL, RR & FJU ROHLF. 1979. Biometría. Principios y métodos estadísticos de la investigación biológica. H. Blume. Madrid. 832 pp.

SWITZER, GL & LE NELSON. 1972. Nutrient accumulation and cycling in loblolly pine (Pinus taeda L.) plantation ecosystems: the first twenty years. Soil Sci. Soc. Am. Pro. 36:143-147.

TABATABAI, MA & JM BREMNER. 1991. Automated instruments for determination of total carbon, nitrogen and sulfur in soils by combustion techniques. Pp. 261-286 en: Soil analysis, modern instrumental techniques. 2da edn. Marcel Dekker. New York.

TURNER, J & M LAMBERT. 1996. Nutrient cycling and forest management. Pp. 229-248 en: PM Attiwill & MA Adams (eds). Nutrition ofeucalypts. CSIRO, Canberra.

WEI, X; W LIU; J WATERHOUSE & M ARMLEDER. 2000. Simulations on impacts of different management strategies on long-term site productivity in lodgepole pine forest of the central interior of British Columbia. Forest Ecol. Manag. 133:217-229.

WHITTAKER, RH & G WOODWELL. 1968. Dimension and production relations of trees and shrubs in the Brookhaven Forest, New York. J. Ecol. 56:1-25.

Published

2003-12-01

How to Cite

Goya, J. F., Pérez, C., Frangi, J. L., & Fernández, R. (2003). Harvesting effects and residue fate on nutrient stability of Pinus taeda L. plantations. Ecología Austral, 13(2), 139–150. Retrieved from https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1527

Issue

Section

Articles