Comparación experimental de la tasa de descomposición foliar de especies vegetales del centro-oeste de Argentina
Abstract
Litter decomposition in the soilis one of the main processes in ecosystem functioning. Besides chemical environmental conditions and species composition of soil communities,litter quality of different species has a strong influence on this process. The aim of this study was to experimentally quantify the decomposition rates of leaf litter of a wide range of plant species from central-western Argentina. Fifty two plant species were selected, covering a wide range of families and life forms. Ten litter samples of each species were buried simultaneously in an experimental decomposition bed during 9 and 18 summer weeks. Decomposition rate was defined as the percentage of dry mass loss after 9 or 18 weeks of burial. Decomposition rates in both treatments were highly correlated. Decomposition rate was similar among plant families, but differed among functional groups. Herbaceous dicots and deciduous woody plants decomposed faster than evergreen woody, bromelioid, succulent and aphyllous functional groups. Graminoids showed relatively slow decomposition rates, similar to those of woody evergreen species. These results contribute to the understanding of the role of dominant species on the functioning of native ecosystems.
References
Anderson, J.M. 1991. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecological Applications 1:326-347.
Cabido, M. 1985.Las comunidades vegetales de la Pampa de Achala, Sierras de Córdoba, Argentina. Documents phytosociologiques 9:431-443.
Cabido, M., A Acosta y. S. Díaz. 1989. Estudios fitosociológicos en pastizales de las Sierras de Córdoba, Argentina. Las comunidades de la Pampa de San Luis. Phytocoenología 17:569-592.
Cabido, M., A. Acosta y S. Díaz. 1990. The vascular flora and vegetation of granitic outcrops in the upper Córdoba mountains. Las comunidades de La Pampa de San Luis. Phytocoenología 19:267-281.
Cabido, M., Manzur, A., M.L Carranza y C. González. 1993. La vegetación y el medio físico del Chaco Árido en la Provincia de Córdoba, Argentina Central. Phytocoenología 24:423-460.
Cabrera, A. 1976. Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería 2. ACME, Buenos Aires.
Capitanelli, R.G. 1979. Bosquejo geomorfológico de la Provincia de Córdoba. Revista del I.G.M. 5:66-70.
ChapinF.S. III. 1980. The mineral nutrition of wild plants. Annual Review of Ecological Systematics 11:233-260.
Coley, P.D. , J.P. Bryant, y F.S. Chapin. 1985. Resource availability and plant antiherbivore defense. Science 230:895-899.
Cornelissen, J.H.C. 1996. An experimental comparison ofleaf decomposition rates in a wide range oftemperate plant species and types. Journal of Ecology 84:573-582.
Cornelissen, J.H.C. y K. Thompson. 1997.Functionalleaf attributes predict litter decomposition rate in herbaceous plants. New Phytologist, en prensa.
Cotrufo, M.F., P. Ineson y A.P. Rowland. 1994. Decomposition of tree leaf litter grown under elevated CO,: Effect on litter quality. Plant and Soil 163:121-130.
De Angelis, D.L. 1992. Dynamics of Nutrient Cycling and Food Webs. Chapman and Hall, London.
Díaz, S y Cabido, M. 1997. Plant functional types and ecosystem function in response to global change: a multiscale aproach. Journal of Vegetation Science 8, en prensa.
Duarte, C.M., K. Sand-Jensen, S.L. Nielsen, S. Enríquez y S. Agusti. 1995. Comparative functional plant ecology: rationale and potentials. Trendsin Ecology and Evolution 10:418-421.
Eijsackers, H. y Zehnder, A.J.B. 1990. Litter decomposition: a russian matriochka doll. Biogeochemistry 11:153- 174.
Grime, J.P. 1979. Plant Strategies and Vegetation Processes. J. Wiley and Sons, New York.
Grime, J.P., J.H.C. Cornelissen, K. Thompson y J.G. Hodgson. 1996. Evidence of a causal correction between anti-herbivore defence and the decomposition rate of leaves. Oikos 77:489-494.
Hobbie, S.E. 1992. Effects of plant species on nutrient cycling. Trends in Ecology and Evolution 7:336-339.
Hobbie, S.E. 1996.Temperature and plant species control overlitter decomposition in Alaskan tundra. Ecological Monographs 66:503-522.
Hollander, M. y D.A. Wolfe. 1972. Non parametric statistical methods. John Wiley and Sons, New York.
Howard, P.J.A. y D.M. Howard. 1974. Microbial decomposition oftree and shrub leaflitter. 1.Weightloss and chemical composition of decomposing litter. Oikos 25:341-352.
Killham K. 1995.Soil Ecology. Cambridge University Press, Cambridge.
Morello, J. 1958. La provincia fitogeográfica del Monte. Opera Lilloana 2:1-155.
Morello, J., J. Protomastro, L. Sancholuz y C. Blanco. 1985. Estudio macroecológico de los Llanos de La Rioja. Serie del cincuentenario de la Administración de Parques Nacionales 5:1-53.
Mtambanengwe, F. y H. Kirchmann. 1995. Litter from a tropical savanna woodland (MIOMBO): chemical composition and C and N mineralization. Soil Biology and Biochemistry 27:1639-1651.
Norušis, M.J. 1992. SPSS for Windows. Advanced Statistics Release 5. SPSS. Inc., Chicago.
Schulze, E.D. y F.S. Chapin III. 1987. Plant specialization to environments of different resource availability. Ecol. Studies 61:120-148.
Seastedt, T.R., D.A. Jr. Crossley, V. Meentemeyer y J.B. Waide. 1983. A two-year study of leaf litter decomposition as related to microclimatic factors and microarthropos abundance in the southern Appalachians. Holartic Ecology 6:11-16.
Swift, M.J., O.W. Heal, and J.M. Anderson. 1979. Decomposition in terrestrial ecosystems. Studies in Ecology 5. Blackwell, Oxford.
Watson, R.T., M.C. Zynyowera, R.H. Moss y D.J. Dokken. 1996. Climate Change 1995: Impacts, Adaptation and Mitigation of Climate Change: Scientific-Technical Analyses. Cambridge University Press, Cambridge.
Downloads
Published
How to Cite
Issue
Section
License
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.