Temporal variation in abundance of mosquitoes (Diptera: Culicidae) in the subtropical Brazilian Atlantic forest
DOI:
https://doi.org/10.25260/EA.21.31.3.0.1702Keywords:
abiotic factors, circular analysis, climate changeAbstract
Understanding the temporal variation in abundance patterns of vector or potential vector species, as well as the abiotic factors associated with these patterns, enables the creation of strategic measures aimed at preventing diseases spread by these organisms. Here, we evaluate through circular and linear analyses the temporal variation in abundance patterns of native mosquito species and verify how abiotic factors (temperature and rainfall) have influenced these patterns. For this purpose, fortnightly collections were carried out during one year in a remnant of the Atlantic Forest in Southern Brazil. We collected 1891 specimens belonging to 24 species. From those, 10 species were abundant enough to evaluate temporal variation in abundance patterns. We found different periods of occurrence for different species of mosquitoes and the distribution of abundances also differed throughout the year. Temperature was the main abiotic factor associated with temporal variation in abundance patterns presented by mosquito species. In this way, the application of these analyses is particularly interesting for the understanding of temporal variation in abundance patterns and subsequent adoption of preventive strategies for organisms of medical importance such as mosquitoes.
References
Abreu, F. V. S de, I. P. Ribeiro, A. Ferreira-de-Brito A., A. A. Cunha dos Santos, R. Moraes de Miranda, et al. 2019. Haemagogus leucocelaenus and Haemagogus janthinomys are the primary vectors in the major yellow fever outbreak in Brazil, 2016-2018. Emerging Microbes and Infections 8:218-231. https://doi.org/10.1080/22221751.2019.1568180.
Alvares, C. A, J. L. Stape, P. C. Sentelhas, J. L. de Moraes Gonçalves, and G. Sparovek. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22:711-728. https://doi.org/10.1127/0941-2948/2013/0507.
Baeza, A., M. Santos-Vega, A. P. Dobson, and M. Pascual. 2017. The rise and fall of malaria under land-use change in frontier regions. Nat Ecol Evol 1:0108. https://doi.org/10.1038/s41559-017-0108.
Bergin, T. M. 1991. A Comparison of Goodness-of-Fit Tests for Analysis of Nest Orientation in Western Kingbirds (Tyrannus verticalis). The Condor 93:164-171. https://doi.org/10.2307/1368619.
Bolker, B., and M. B. Bolker. 2013. Package ‘bbmle.’ Tools for General Maximum Likelihood Estimation. URL: cran.r project.org/web/packages/bbmle/bbmle.pdf.
Brito, M. M., D. B. Ribeiro, and M. Raniero. 2014. Functional composition and phenology of fruit-feeding butterflies in a fragmented landscape: variation of seasonality between habitat specialists. Journal of Insect Conservation 18:547-560. https://doi.org/10.1007/s10841-014-9650-8.
Buckley, L. B., A. J. Arakaki, A. F. Cannistra, H. M. Kharouba, and J. G. Kingsolver. 2017. Insect development, thermal plasticity and fitness implications in changing, seasonal environments. Integrative and Comparative Biology 57:988-998. https://doi.org/10.1093/icb/icx032.
Burnham, K. P. and D. R. Anderson (eds.). 2004. Model Selection and Multimodel Inference. Springer New York, New York, NY. https://doi.org/10.1007/b97636.
Burnham, K. P., D. R. Anderson, and K. P. Huyvaert. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23-35. https://doi.org/10.1007/s00265-010-1029-6.
Carvalho, G. C, R. dos Santos Malafronte, C. Miti Izumisawa, R. Souza Teixeira, L. Natal, and M. Toledo Marrelli. 2014. Blood meal sources of mosquitoes captured in municipal parks in São Paulo, Brazil. Journal of Vector Ecology 39:146-152. https://doi.org/10.1111/j.1948-7134.2014.12081.x.
Consoli, R. A. G. B., and R. L. Oliveira. 1994. Principais mosquitos de importância sanitária no Brasil. Editora FIOCRUZ. https://doi.org/10.7476/9788575412909.
Deichmeister, J. M., and A. Telang. 2011. Abundance of West Nile virus mosquito vectors in relation to climate and landscape variables. Journal of Vector Ecology 36:75-85. https://doi.org/10.1111/j.1948-7134.2011.00143.x.
Denlinger, D. L., and P. A. Armbruster. 2016. Molecular Physiology of Mosquito Diapause. Pp 329-361 in Advances in Insect Physiology. Elsevier. https://doi.org/10.1016/bs.aiip.2016.05.002.
Ewing, D. A., C. A. Cobbold, B. V. Purse, M. A. Nunn, and S. M. White. 2016. Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes. Journal of Theoretical Biology 400:65-79. https://doi.org/10.1016/j.jtbi.2016.04.008.
Ferreira-de-Freitas, V., R. M. França, L. C. Bartholomay, and C. B. Marcondes. 2016. Contribution to the Biodiversity Assessment of Mosquitoes (Diptera: Culicidae) in the Atlantic Forest in Santa Catarina, Brazil. J Med Entomol 54:368-376. https://doi.org/10.1093/jme/tjw196.
Forattini, O. P. 2002. Culicidologia Médica: Identificaçäo, Biologia e epidemiologia. Edusp, São Paulo.
Forattini, O. P., I. Kakitani, E. Massad, and D. Marucci. 1995. Studies on mosquitoes (Diptera: Culicidae) and anthropic environment: 9- Synanthropy and epidemiological vector role of Aedes scapularis in South-Eastern Brazil. Rev Saúde Pública 29:199-207. https://doi.org/10.1590/S0034-89101995000300007.
Forrest, J. R. 2016. Complex responses of insect phenology to climate change. Current Opinion in Insect Science 17:49-54. https://doi.org/10.1016/j.cois.2016.07.002.
Franklinos, L. H. V., K. E. Jones, D. W. Redding, and I. Abubakar. 2019. The effect of global change on mosquito-borne disease. The Lancet Infectious Diseases 19:e302-e312. https://doi.org/10.1016/S1473-3099(19)30161-6.
Google. 2016. Google Earth. Available at https://www.google.com.br/intl/pt-BR/earth/ (Accessed 20 June 2020).
Guedes, M. L. P. 2012. Culicidae (Diptera) no Brasil: relações entre diversidade e distribuição de enfermidades. Oecologia Australis 12:283-296. https://doi.org/10.4257/oeco.2012.1602.07.
Guimarães, A. É., R. P. Mello, C. M. Lopes, and C. Gentile. 2000. Ecology of mosquitoes (Diptera: Culicidae) in areas of Serra do Mar State Park, State of São Paulo, Brazil. I - Monthly frequency and climatic factors. Mem Inst Oswaldo Cruz 95:01-16. https://doi.org/10.1590/S0074-02762000000100001
Guimarães, A. É., and V. M. N. Victório. 1986. Mosquitos no Parque Nacional da Serra dos Orgãos, Estado do Rio de Janeiro, Brasil: III. Preferência horária para hematofagia. Mem Inst Oswaldo Cruz 81:93-103. https://doi.org/10.1590/S0074-02761986000100013.
Hanley, K. A., T. P. Monath, S. C. Weaver, S. L. Rossi, R. L. Richman, and N. Vasilakis. 2013. Fever versus fever: The role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infection, Genetics and Evolution 19:292-311. https://doi.org/10.1016/j.meegid.2013.03.008.
INMET. 2014. Instituto Nacional de Meteorologia. URL: inmet.gov.br/portal.
Julião, G. R., F. Abad-Franch, R. Lourenço-de-Oliveira, and S. L. B. Luz. 2010. Measuring Mosquito Diversity Patterns in an Amazonian Terra Firme Rain Forest. Journal of medical entomology 47:121-128. https://doi.org/10.1603/ME09060.
Kishimoto-Yamada, K., and T. Itioka. 2015. How much have we learned about seasonality in tropical insect abundance since Wolda (1988)? Seasonality in tropical insect abundance. Entomological Science 18:407-419. https://doi.org/10.1111/ens.12134.
Kovach, W. L. 2011. Oriana-circular statistics for windows, ver. 4. Version Pentraeth.
Lane, J. 1953a. Neotropical Culicidae. Univ. São Paulo, São Paulo.
Lane, J. 1953b. Neotropical Culicidae. Univ. São Paulo, São Paulo.
Loetti, V., N. Burroni, and D. Vezzani. 2007. Seasonal and daily activity patterns of human-biting mosquitoes in a wetland system in Argentina. J Vect EcoL 32:358. https://doi.org/10.3376/1081-1710(2007)32[358:SADAPO]2.0.CO;2.
Lozovei, A. L. 2001. Microhabitats de mosquitos (Diptera, Culicidae) em internódios de taquara na Mata Atlântica, Paraná, Brasil. Iheringia, Sér Zool 90:3-13. https://doi.org/10.1590/S0073-47212001000100001.
Lozovei, A. L. 1998. Mosquitos dendrícolas (Diptera, Culicidae) em internódios de taquara da Floresta Atlântica, Serra do Mar e do Primeiro Planalto, Paraná, Brasil. Braz arch biol technol 41:501-510. https://doi.org/10.1590/S1516-89131998000400016.
Maciá, A. 1997. Age Structure of Adult Mosquito (Diptera: Culicidae) Populations from Buenos Aires Province, Argentina. Mem Inst Oswaldo Cruz 92:143-149. https://doi.org/10.1590/S0074-02761997000200002.
Medeiros-Sousa, A. R., W. Ceretti, P. R. Urbinatti, G. C. Carvalho, M. D. Paula, A. Fernandes, M. O. Matos, L. D. Orico, A. B. Araújo, M. S. Nardi, and M. T. Marrelli. 2013. Mosquito Fauna in Municipal Parks of São Paulo City, Brazil: A Preliminary Survey. Journal of the American Mosquito Control Association 29:275-279. https://doi.org/10.2987/12-6304R.1.
Morellato, L. P. C., D. C. Talora, A. Takahasi, C. C. Bencke, E. C. Romera, and V. B. Zipparro. 2000. Phenology of Atlantic Rain Forest Trees: A Comparative Study1. Biotropica 32:811-823. https://doi.org/10.1111/j.1744-7429.2000.tb00620.x.
Orlandin, E., E. B. Santos, M. Piovesan, M. A. Favretto, A. H. Schneeberger, V. O. Souza, G. A. Muller, and G. Wagner. 2017. Mosquitoes (Diptera: Culicidae) from crepuscular period in an Atlantic Forest area in Southern Brazil. Braz J Biol 77:60-67. https://doi.org/10.1590/1519-6984.09815.
Orlandin, E., E. B. Santos, A. Schneeberger, V. O. Souza, and M. A. Favretto. 2020. Habitat use by Neotropical mosquitoes (Diptera: Culicidae): vegetation structure and edge effects. Austral Entomology 59: 541-548 https://doi.org/10.1111/aen.12477.
Piovesan, M., E. Carneiro, A. Specht, and M. M. Casagrande. 2019. Where and when? How phenological patterns of armyworm moths (Lepidoptera: Noctuidae) change along a latitudinal gradient in Brazil. Bull Entomol Res 109:490-499. https://doi.org/10.1017/S0007485318000822.
Piovesan, M., A. Specht, E. Carneiro, S. Vieira Paula-Moraes, and M. Martins Casagrande. 2018. Phenological patterns of Spodoptera Guenée, 1852 (Lepidoptera: Noctuidae) is more affected by ENSO than seasonal factors and host plant availability in a Brazilian Savanna. Int J Biometeorol 62:413-422. https://doi.org/10.1007/s00484-017-1450-x.
QGIS DT. 2017. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Boston, Massachusetts, USA. URL: qgis.org/en/site.
R CORE TEAM. 2015. R Development Core Team. URL: r-project.org.
Reinhold, J., C. Lazzari, and C. Lahondère. 2018. Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects 9:158. https://doi.org/10.3390/insects9040158.
Reis, M., G. A. Müller, and C. B. Marcondes. 2010. Inventário de mosquitos (Diptera: Culicidae) da Unidade de Conservação Ambiental Desterro, Ilha de Santa Catarina, Sul do Brasil. Biota Neotrop 10:333-337. https://doi.org/10.1590/S1676-06032010000300031.
Ribeiro, D. B., P. I. Prado, K. S Brown Jr., and A. V. L. Freitas. 2010. Temporal Diversity Patterns and Phenology in Fruit-feeding Butterflies in the Atlantic Forest: Temporal Diversity in Butterflies. Biotropica 42:710-716. https://doi.org/10.1111/j.1744-7429.2010.00648.x.
Ripley, B., B. Venables, D. M. Bates, K. Hornik, A. Gebhardt, and D. Firth. 2013. Package ‘mass.’ URL: cran.r-project.org/web/packages/MASS/MASS.pdf.
Santos, E. B., M. A. Favretto, and G. A. Müller. 2020. When and what time? On the seasonal and daily patterns of mosquitoes (Diptera: Culicidae) in an Atlantic Forest remnant from Southern Brazil. Austral Entomology 59:337-344. https://doi.org/10.1111/aen.12454.
Santos, E. B., M. A. Favretto, and M. A. Navarro‐Silva. 2019. Community structure of mosquitoes (Diptera: Culicidae) in the coast of Southern Brazil. Austral Entomology 58:826-835. https://doi.org/10.1111/aen.12412.
Silva, M. A. N., and A. L. Lozovei. 1998. Mosquitos (Diptera, Culicidae) capturados com isca humana em área preservada de Curitiba, Paraná. Rev Bras Zool 15:965-976. https://doi.org/10.1590/S0101-81751998000400015.
Silva, N. I. O., L. Sacchetto, I. M. de Rezende, G. de Souza Trindade, A. D. LaBeaud, B. de Thoisy, and B. P. Drumond. 2020. Recent sylvatic yellow fever virus transmission in Brazil: the news from an old disease. Virol J 17:9. https://doi.org/10.1186/s12985-019-1277-7.
Silver, J. B. 2008. Sampling the Adult Resting Population. Pp. 373-492 in Mosquito Ecology: Field Sampling Methods. Springer Science and Business Media. https://doi.org/10.1007/978-1-4020-6666-5_5.
Thomas, S. M., U. Obermayr, D. Fischer, J. Kreyling, and C. Beierkuhnlein. 2012. Low-temperature threshold for egg survival of a post-diapause and non-diapause European aedine strain, Aedes albopictus (Diptera: Culicidae). Parasites and vectors 5:1-7. https://doi.org/10.1186/1756-3305-5-100.
Urcola, J. I., and S. Fischer. 2019. Seasonal and Environmental Variables Related to the Abundance of Immature Mosquitoes in Rain Pools of a Peri-Urban Park of Buenos Aires (Argentina). Journal of Medical Entomology 56:716-724. https://doi.org/10.1093/jme/tjy223.
Vibrans, A. C., L. Sevegnani, A. L. Gasper, and D. V. Lingner. 2012. Inventário florístico florestal de Santa Catarina. Vol. 2: Floresta estacional decidual. Universidade Regional de Blumenau, Brasil, Blumenau.
Vieira, C. J. S. P., S. F. Thies, D. J. F. da Silva, J. Rigotti Kubiszeski, E. Serpa Barreto, H. A. de Oliveira Monteiro, A. Mondini, Ch. Steiner São Bernardo, and R. Vieira de Morais Bronzoni. 2020. Ecological aspects of potential arbovirus vectors (Diptera: Culicidae) in an urban landscape of Southern Amazon, Brazil. Acta Tropica 202:105276. https://doi.org/10.1016/j.actatropica.2019.105276.
Wilk-da-Silva, R., M. F. Mucci, W. Ceretti-Junior, A. M. Ribeiro de Castro Duarte, M. Toledo Marrelli, and A. R. Medeiros-Sousa. 2020. Influence of landscape composition and configuration on the richness and abundance of potential sylvatic yellow fever vectors in a remnant of Atlantic Forest in the city of São Paulo, Brazil. Acta Tropica 204:105385. https://doi.org/10.1016/j.actatropica.2020.105385.
Zar, J. H. 2010. Circular distributions: hypothesis testing. Pp 624-665 in Biostatistical analysis, 5th ed. Zar, New Jersey.
Zequi, J. A. C., and J. Lopes. 2001. Culicideofauna (Diptera) encontrada em entrenós de taquara de uma mata residual na área urbana de Londrina, Paraná, Brasil. Rev Bras Zool 18:429-438. https://doi.org/10.1590/S0101-81752001000200014.
Zittra, C., S. Vitecek, A. G. Obwaller, H. Rossiter, B. Eigner, T. Zechmeister, J. Waringer, and H. -P. Fuehrer. 2017. Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae). Parasites Vectors 10:205. https://doi.org/10.1186/s13071-017-2140-6.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Elton Orlandin, Mônica Piovesan, Vilmar Oliveira De Souza, André H. Schneeberger, Mario A. Favretto, Emili Bortolon Dos Santos
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.