Native mycorrhizal infectivity in soils of Pampean Region with soybean crop, different historical land uses and edaphic characteristics

Authors

  • Valeria S. Faggioli Instituto Nacional de Tecnología Agropecuaria (INTA), EEA Marcos Juárez
  • Marta N. Cabello Instituto Spegazzini (Facultad de Ciencias Naturales y Museo, UNLP). Comisión de Investigaciones Científicas de la Prov. de Buenos Aires (CICPBA), Argentina
  • Fernanda Covacevich Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-FIBA. Mar del Plata, Argentina

DOI:

https://doi.org/10.25260/EA.22.32.2.0.1767

Keywords:

mycorrhizal fungi, mycorrhizal colonization, land soil use history, Pampean Region

Abstract

The expansion of soybean crop in Argentina replaced other crops, extensive livestock and forest ecosystems. It’s unclear whether this has altered native microbial communities that could supply ecosystem services, such as arbuscular mycorrhizal fungi (AMF), symbionts of the roots of most higher plants and known to promote host nutrition and growth, and soil sustainability. However, the magnitude of the contribution by the AMFs depends, in part, on maintaining its abundance in the soil and their potential to form mycorrhizae with roots. Our objective was to analyze variations in mycorrhizal infectivity (IMS50) and in spontaneous arbuscular mycorrhizal colonization (AM) of soybean crops cropped at three agricultural sites from the north of the Pampean Region (Córdoba), in relation to the historical land use (Agricultural [soybeans for more than 60 years], Mixed agricultural-livestock [A-G, soybean in the last 35 years], and Sierras [soybean in the last 20 years]). An in vivo bioassay revealed that the highest IMS50 occurred at the Agricultural and Sierras sites, in relation to the Mixed A-G one, the site with the highest available soil P content. Both the IMS50 and AM negatively correlated with soil P, while IMS50 was negatively associated with sand content, and positively with water, carbon and clay content. A high degree of infective potential by native AMF was detected in soils destined for soybean crop at the Pampean Region with different historical land use. The IMS50 was a more sensitive detection method than the determination of AM colonization in the field. It is concluded that IMS 50 could be used to define agricultural management strategies to maintain/favor native AMF communities.

Author Biographies

Valeria S. Faggioli, Instituto Nacional de Tecnología Agropecuaria (INTA), EEA Marcos Juárez

VS Faggioli is an Agricultural Engineer, graduated (2004) at the National University of Villa María (Cordoba, Argentina), she is Magister Scientiae in Soil Sciences graduated (2008) from the Faculty of Agronomy - University of Buenos Aires and PhD in Natural Sciences, Graduated (2016) from the Faculty of Natural Sciences and Museum, National University of La Plata. Since 2006, she has been part of the permanent staff of the National Institute of Agricultural Technology (INTA) from Marcos Juarez, Córdoba, developing as an External Management Researcher in Soil Biology. Her main topic of interest is related to the characterization and functionality of the edaphic microbiota, native to agroecosystems. She also participates in the Agroecology Network and in the Microbial Genetic Resources Management Plan. She has done training stays abroad. She actively participates in human resources training and diffusion of its results both in the scientific field through publications, and in the agricultural field through lectures, consultancies, etc.

Marta N. Cabello, Instituto Spegazzini (Facultad de Ciencias Naturales y Museo, UNLP). Comisión de Investigaciones Científicas de la Prov. de Buenos Aires (CICPBA), Argentina

MN CABELLO is Bachelor in Natural Sciences or Ecology, graduated (1980) at the Faculty of Exact, Physical and Natural Sciences of the National University of La Plata, Argentina. She is PhD in Biological Sciences, graduated (1985) at the same Unviersity. She is a Researcher, since 1987, of the Commission for Scientific Research of the Province of Buenos Aires, developing her activities at the Spegazzini Institute-La Plata, belonging to the Faculty of Natural Sciences and Museum. She is a full professor at the National University of La Plata. Her main line of research is related to the taxonomic characterization of native fungi (with emphasis on arbuscular mycorrhizal fungi). She is actively involved in HR training and dissemination of her results in the scientific field through a large list of publications.

Fernanda Covacevich, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-FIBA. Mar del Plata, Argentina

F Covacevich is Bachelor in Biological Sciences (1994) from the National University of Mar del Plata (UNMdP), Magister Scientiae in Plant Production and PhD in Agricultural Sciences graduated (1998 and 2005, respectively) at the Faculty of Agricultural Sciences of the UNMdP . She has done postdoctoral studies and stays abroad. Since 2010, she is member of the National Council for Scientific and Technical Research as a Researcher. She participates in the coordination of National INTA projects. Her main line of research is, through classical and molecular methodologies, the study of edaphic microorganisms (with emphasis on arbuscular mycorrhizal fungi, as well as Trichoderma fungi, P solubilizers, among others), their genetic diversity and potentiality associated with agricultural management practices. She participates in human resources training through undergraduate and graduate student training, as well as through graduate courses. She actively participates in the divulgation of the results of her research both in the scientific field through publications, and in the agricultural field through dissertations, consultancies, etc.

References

Armenta Calderón, A. D., S. F. Moreno-Salazar, E. Furrazola Gómez, and A. Ochoa-Meza. 2019. Arbuscular mycorrhiza, carbon content and soil aggregation in Sonoran Desert plants. Spanish Journal of Soil Science 9:42-53. https://doi.org/10.3232/SJSS.2019.V9.N1.03.

Basche, A. D., T. C. Kaspar, S. V. Archontoulis, D. B. Jaynes, T. J. Sauer, T. B. Parkin, and F. E. Miguez. 2016. Soil water improvements with the long-term use of a winter rye cover crop. Agricultural Water Management 172:40-50. https://doi.org/10.1016/j.agwat.2016.04.006.

Bray, R. H., and L. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59(1):39-46. https://doi.org/10.1097/00010694-194501000-00006.

Bremmer, J. 1965. Nitrogen availability indexes. Methods of soil analysis, part 2:1324-1345. https://doi.org/10.2134/agronmonogr9.2.c37.

Cacace, G. P., and J. O. Morina. 2019. Expansión de la soja transgénica y deforestación en la Argentina, 1990-2018. VII Congreso Nacional de Geografía de Universidades Públicas y XXI Jornadas de Geografía de la UNLP. URL: tinyurl.com/5n6br7dd.

Clemmensen, K., A. Bahr, O. Ovaskainen, A. Dahlberg, A. Ekblad, H. Wallander, J. Stenlid, R. Finlay, D. Wardle, and B. Lindahl. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339(6127):1615-1618. https://doi.org/10.1126/science.1231923.

Chen, M., M. Arato, L. Borghi, E. Nouri and D. Reinhardt. 2018. Beneficial Services of Arbuscular Mycorrhizal Fungi - From Ecology to Application. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.01270.

Covacevich, F., H. E. Echeverría, and L. A. N. Aguirrezabal. 2007. Soil available phosphorus status determines indigenous mycorrhizal colonization into field and glasshouse-grown spring wheat in Argentina. Applied Soil Ecology 35:1-9. https://doi.org/10.1016/j.apsoil.2006.06.001.

Covacevich, F., M. Eyherabide, H. R. Sainz Rozas, and H. E. Echeverría. 2012. Capacidad micotrófica arbuscular y características químicas de suelos agrícolas y prístinos de Buenos Aires (Argentina). Ciencia del Suelo 30(2):119-128.

Covacevich, F., J. Martínez Verneri, and G. A. A. Dosio. 2018. Mycorrhizal colonization in maize and sunflower submitted to source or sink limitations is differentially related to carbohydrates concentration. Crop and Pasture Science 69(10):974-984. https://doi.org/10.1071/CP17340.

Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada, and C. W. Robledo. 2014. InfoStat version 2014. Grupo InfoStat. Agrarias FdC, Córdoba UNd, Argentina.

Espósito, G. P., C. A Castillo, G. R. Balboa, and R. G. Balboa. 2009. Nivel crítico de fosforo y azufre en suelos del sur de Córdoba para el cultivo de soja Informaciones agronómicas 43:16-18. URL: tinyurl.com/3ayedh8v.

Faggioli, V. S., M. N. Cabello, G. Grilli, M. Vasard, F. Covacevich, and M. Öpik. 2019. Root colonizing and soil borne communities of arbuscular mycorrhizal fungi differ among soybean fields with contrasting historical land use. Agriculture, Ecosystems and Environment 269:174-182. https://doi.org/10.1016/j.agee.2018.10.002.

Faggioli, V. S., M. Cabello, N. M. Melchiorre, and F. Covacevich. 2020. Contribución de hongos micorrícicos nativos a la nutrición fosforada y su impacto en la partición de fotoasimilados de soja. Ciencia del Suelo 38(1):1-13.

Fehr, W., C. Caviness, D. Burmood, and J. Pennington. 1971. Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Science 11(6):929-931. https://doi.org/10.2135/cropsci1971.0011183X001100060051x.

Fernández, M., H. Belinque, F. G. Boem, and G. Rubio. 2009. Compared phosphorus efficiency in soybean, sunflower and maize. Journal of Plant Nutrition 32(12):2027-2043. https://doi.org/10.1080/01904160903308135.

Fernández-Gnecco, G. A., K. Smalla, L. Maccario, S. J. Sørensen, P. A. Barbieri, V. F. Consolo, F. Covacevich, and D. Babin. 2021. Microbial community analysis of soils under different soybean cropping regimes in the Argentinean south-eastern Humid Pampas. Fems Microbiology Ecology fiab007. https://doi.org/10.1093/femsec/fiab007.

Finlay, R. D. 2008. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany 59 (5):1115-1126. https://doi.org/10.1093/jxb/ern059.

García, M., and N. L. Puppi. 2007. Tenencia de la tierra y tecnología en productores de soja de Santiago del Estero: comparación con productores bonaerenses. Revista de la Facultad de Agronomía 27:155-171.

Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. Pp. 383-411 en A. Klute (ed.). Methods of soil analysis. Part 1. 2nd ed. Agron Monogr 9. ASA and SSSA, Madison, WI, USA. https://doi.org/10.2136/sssabookser5.1.2ed.c15.

Gemma, J. N., and R. E. Koske. 1988. Seasonal Variation in Spore Abundance and Dormancy of Gigaspora gigantea and in Mycorrhizal Inoculum Potential of a Dune Soil. Mycologia 80(2):211-216. https://doi.org/10.2307/3807795.

González, M. C., and M. Román. 2009. Expansión agrícola en áreas extra-pampeanas de la Argentina. Una mirada desde los actores sociales. Cuadernos de Desarrollo Rural 6(62):99-120.

Hart, M. M., and R. J. Reader. 2005. The role of the external mycelium in early colonization for three arbuscular mycorrhizal fungal species with different colonization strategies. Pedobiología 49(3):269-279. https://doi.org/10.1016/j.pedobi.2004.12.001.

INTA. 2004. Carta de Suelos de la República Argentina. Instituto Nacional de Tecnología Agropecuaria.

Jansa, J., H.-R. Oberholzer, and S. Egli. 2009. Environmental determinants of the arbuscular mycorrhizal fungal infectivity of Swiss agricultural soils. European Journal of Soil Biology 45(5):400-408. https://doi.org/10.1016/j.ejsobi.2009.07.004.

Kiers, E. T., and R. F. Denison. 2014. Inclusive fitness in agriculture. Philosophical Transaction of the Royal Society - Biological Sciences 369(1642):20130367. https://doi.org/10.1098/rstb.2013.0367.

Lal, R. and M.K. Shukla. 2004. Principles of soil physics: CRC Press. https://doi.org/10.4324/9780203021231.

McGonigle, T., M. Miller, D. Evans, G. Fairchild, and J. Swan. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115(3):495-501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x.

Mónaco, M. H., P. L. Peri, F. A. Medina, H. P. Colomb, V.A. Rosales, F. Berón, E. Manghi, M. L. Miño, J. Bono, J. R. Silva, J. J. González Kehler, L. Ciuffoli, F. Presta, A. García Collazo, M. Navall, C. Carranza, D. López, and G. Gómez Campero. 2020. Causas e impactos de la deforestación de los bosques nativos de Argentina y propuestas de desarrollo alternativas. Argentina Unida. Ministerio de Ambiente y Desarrollo Sostenible Argentina. Pp. 60. URL: tinyurl.com/2p8cm4nh.

Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31-36. https://doi.org/10.1016/S0003-2670(00)88444-5.

Nottingham, A. T., B. L. Turner, K. Winter, M. G. van der Heijden, and E. V. Tanner. 2010. Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytologist 186(4):957-967. https://doi.org/10.1111/j.1469-8137.2010.03226.x.

Oyarzabal, M., J. Clavijo, L. Oakley, F. Biganzoli, P. Tognetti, I. Barberis, H. Maturo, R. Aragón, P. Campanello, D. Prado, M. Oesterheld, and R. J. C. Leon. 2018. Unidades de vegetación de la Argentina. Ecología Austral 28:040-063. https://doi.org/10.25260/EA.18.28.1.0.399.

Paruelo, J. M., J. P. Guerschman, and S. R. Verón. 2005. Expansión agrícola y cambios en el uso del suelo Ciencia Hoy 15(87):14-23.

Pérez, G. R., P. A. Barbieri, K. Hernández Guijarro, H. E. Echeverría, and F. Covacevich. 2017. Labranza y fertilización como moduladores de la dinámica de comunidades microbianas asociadas a un cultivo de trigo en el sudeste bonaerense (Argentina). Revista de la Facultad de Ciencias Agrarias UNCUYO 49(2):219-234.

Phillips, J. M., and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions British Mycological Society 55(1):158-161. https://doi.org/10.1016/S0007-1536(70)80110-3.

Plenchette, C., R. Perrin, and P. Duvert. 1989. The concept of soil infectivity and a method for its determination as applied to endomycorrhizas. Canadian Journal of Botany 67(1):112-115. https://doi.org/10.1139/b89-016.

Sagadin, M. B., M. I. Monteoliva, C. M. Luna, and M. N. Cabello. 2018. Diversidad e infectividad de hongos micorrícicos arbusculares nativos provenientes de algarrobales del Parque Chaqueño argentino con características edafoclimáticas contrastantes. AgriScientia 35(2):19-33. https://doi.org/10.31047/1668.298x.v35.n2.21001.

Satorre, E. H. 2005. Cambios tecnológicos en la agricultura argentina actual. Ciencia Hoy 15(87):24-31.

Schalamuk, S., and M. Cabello. 2009. Arbuscular mycorrhizal fungal propagules from tillage and notillage systems: possible effects on Glomeromycota diversity. Mycología 102(2):261-268. https://doi.org/10.3852/08-118.

Stoian, V., R. Vidican, I. Crişan, C. Puia, M. Şandor, V. A. Stoian, F. Păcurar, and I. Vaida. 2019. Sensitive approach and future perspectives in microscopic patterns of mycorrhizal roots. Scientific Reports 9:10233. https://doi.org/10.1038/s41598-019-46743-2.

Urcelay, C., and R. Battistella. 2007. Colonización micorricica en distintos grupos funcionales en plantas herbáceas del centro de Argentina. Ecología Austral 17:179-188.

USDA. 2014. USDA Soil Classification. Soil Survey Staff. Keys to Soil Taxonomy (12th ed.). USDA Natural Resources Conservation Service, Washington, DC, USA.

Valentine A. J. , P. E. Mortimer, A. Kleinert, and V. A. Benedito. 2013. Carbon Metabolism and Costs of Arbuscular Mycorrhizal Associations to Host Roots. Pp. 233-252 en R. Aroca (ed.). Symbiotic Endophytes. Soil Biology 37. Springer-Verlag Berlin Heidelberg. https://doi.org/ 10.1007/978-3-642-39317-4.

van der Heijden, M. G., F. M. Martin, M. A. Selosse, and I. R. Sanders. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205(4):1406-1423. https://doi.org/10.1111/nph.13288.

Verbruggen, E., E. T. Kiers, P. N. C. Bakelaar, W. F. M. Roling, and M. G. van der Heijden. 2011. Provision of contrasting ecosystem services by soil communities from different agricultural fields. Plant and Soil 350(1):43-55. https://doi.org/10.1007/s11104-011-0828-5.

Walkley, A., and I. A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37(1):29-38. https://doi.org/10.1097/00010694-193401000-00003.

Wang, Y. Y., M. Vestberg, C. Walker, T. Hurme, X. Zhang, and K. Lindstrom 2008. Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza 18(2):59-68. https://doi.org/10.1007/s00572-008-0161-x.

Wilson, G. W., C. W. Rice, M. C. Rillig, A. Springer, and D. C. Hartnett. 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters 12(5):452-461. https://doi.org/10.1111/j.1461-0248.2009.01303.x.

Infectividad micorrícica nativa en suelos de la Región Pampeana con cultivo de soja, diferentes historiales y características edáficas

Published

2022-07-14 — Updated on 2022-11-15

Versions

How to Cite

Faggioli, V. S., Cabello, M. N., & Covacevich, F. (2022). Native mycorrhizal infectivity in soils of Pampean Region with soybean crop, different historical land uses and edaphic characteristics. Ecología Austral, 32(2), 469–481. https://doi.org/10.25260/EA.22.32.2.0.1767 (Original work published July 14, 2022)